Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Операции над комплексными числами. Деление комплексных чисел

Читайте также:
  1. B. ПРОГРАММНОЕ ОПРЕДЕЛЕНИЕ НЕЙТРАЛЬНОГО ПОЛОЖЕНИЯ КОРОБКИ ПЕРЕДАЧ ДЛЯ АВТОМОБИЛЕЙ С НЕАВТОМАТИЧЕСКОЙ ТРАНСМИССИЕЙ (петля фиолетового провода должна быть перерезана)
  2. D. Результаты предыдущих комплексных и тематических проверок.
  3. I. Измерение частотной характеристики усилителя и определение его полосы пропускания
  4. II. Деление слова на слоги, составление звуко-слоговой схемы слова, чтение слогов и слов.
  5. II. Распределение бюджета времени (в часах) при изучении дисциплины 3 курс, 1 семестр.
  6. III Распределение часов по семестрам и видам занятий
  7. III. Выделение звука ы из состава слова.

Последняя операция которую осталось рассмотреть — операция деления комплексных чисел. Рассмотрим деление в показательной форме:

(23)

Таким образом при делении комплексных чисел их модули делятся а фазы вычитаются. При делении необходимо чтобы . Получим формулу для деления комплексных чисел в явной форме. Пусть

(24)

умножим и числитель и знаменатель дроби на число комплексно-сопряженное знаменателя:

. (25)

Исходя из (22) в знаменателе дроби получим квадрат модуля знаменателя а числитель перемножим по правилу умножения комплексных чисел:

. (26)

Поделив почленно реальную и мнимую часть числителя на знаменатель получим:

. (27)

Выражение (27) - формула деления комплексных чисел в явной форме. Как можно заметить операции сложения и вычитания удобнее выполнять в явном виде, тогда как умножать и делить комплексные числа быстрее и легче в показательной форме.

 

Выводы

В данной статье введено понятие комплексного числа и рассмотрены основные его свойства. Побробно рассмотрено представление комплексного числа на плоскости, приведена формула Эйлера показательной формы комплексного числа. Рассмотрены основные арифметические операции над комплексными числами.



Дата добавления: 2015-07-18; просмотров: 149 | Нарушение авторских прав


Читайте в этой же книге: Введение понятия комплексного числа. Представление комплексного числа на плоскости | Модуль и фаза комплексного числа | Показательная форма комплексного числа. Формула Эйлера | Комплексная огибающая. Векторное представление сигнала | Структурная схема универсального квадратурного модулятора | Формирование сигналов с амплитудной модуляцией | Спектр сигналов с амплитудной модуляцией | Сигналы с балансной АМ (DSB) и их спектр | Векторное представление сигналов с АМ и DSB | Однополосная АМ с верхней и нижней боковыми полосами |
<== предыдущая страница | следующая страница ==>
Операции над комплексными числами. Умножение комплексных чисел| Полосовые радиосигналы. Виды модуляции

mybiblioteka.su - 2015-2025 год. (0.005 сек.)