Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Предельная мощность машины постоянного тока

Читайте также:
  1. Quot;Угроза, я в опасности". – И какая же эмоция генерируется под воздействием этого постоянного сигнала? Страх, разумеется.
  2. VIII.2. Усилители постоянного тока прямого усиления.
  3. Акцент на удовлетворение и сохранение лояльности постоянного покупателя
  4. Аналитический метод исследования переходных процессов электропривода на базе математической модели двигателя постоянного тока
  5. Асинхронные машины с неподвижным ротором
  6. Асинхронный режим возбужденной синхронной машины
  7. Асинхронный режим невозбужденной синхронной машины

Мощность, на которую может быть выполнена машина постоянного тока, ограничивается условиями коммутации, т. е. допустимыми величинами реактивной э д с. ег и среднего напряжения между коллекторными пластинами

Рис 6-19 Потенциальные кривые щетки

/ — прямолинейная коммутация, 2 — замедленная. 3 — ускооенная


Глава седьмая ПОТЕРИ И КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ ЭЛЕКТРИЧЕСКИХ МАШИН

Потери

Общие положения. При работе электрической машины часть потребляемой ею энергии теряется бесполезно и рассеивается в виде тепла. Мощность потерянной энергии называют потерями мощности или просто потерями.

Потери в электрических машинах подразделяются на основные и добавочные. Основные потери возникают в результате происходящих в машине основных электромагнитных и механических процессов, а добавочные потери обусловлены различными вторичными явлениями. Во вращающихся электрических машинах основные потери подразделяются на 1) механические потери, 2) магнитные потери, или потери в стали, и 3) электрические потери.

К электрическим потерям относятся потери в обмотках, которые называются также потерями в меди, хотя обмотки и не всегда изготовляются из меди; потери в регулировочных реостатах и потери в переходном сопротивлении щеточных контактов.

Рассматриваемые в данной главе вопросы большей частью являются общими для машин постоянного и переменного тока.

Механические потери р„х состоят из 1) потерь в подшипниках,

2) потерь на трение щеток о коллектор или контактные кольца и

3) вентиляционных потерь, которые включают в себя потери на трение частей машины о воздух и другие потери, связанные с вентиляцией машины (мощность кинетической энергии отходящего воздуха и потери в вентиляторе). В ряде случаев электрические машины охлаждаются не воздухом, а водородом или водой, и соответствующие потери также относят к вентиляционным.

Потери в подшипниках pn0Rtn вычисляют по соотношениям, которые рассматриваются в курсах деталей машин и проектирования электрических машин. Эти потери зависят от типа подшипников (качения или скольжения), от состояния трущихся поверхностей, вида смазки и т. д. Важно подчеркнуть, что при работе данной машины эти потери зависят только от скорости вращения и не зависят от нагрузки.

Потери на трение щеток могут быть вычислены по формуле

где feTp — коэффициент трения щеток о коллектор или контактные кольца (kTp = 0,15 -f- 0,30); fm — удельное (на единицу площади) давление на щетку; 5Щ — контактная поверхность всех щеток; vK окружная скорость коллектора или контактных колец.

Потери на вентиляцию рвент зависят от конструкции машины и рода вентиляции. Подробности расчета этих потерь рассматриваются в курсах проектирования электрических машин. В случае если вентиляция осуществляется не встроенным в машину, а отдельно стоящим вентилятором, потери на вентиляцию машины включают потребляемую мощность привода вентилятора.

В самовентилируемых машинах со встроенным центробежным вентилятором потери на вентиляцию иногда вычисляются приближенно по следующей эмпирической формуле:

Рвент = 1,75<2и2, вт, (7-2)

где Q — количество воздуха, прогоняемого через машину, ма/1ек; v — окружная скорость вентиляционных крыльев по их внешнему диаметру, м/сек.

Так как Q также пропорционально и, то из выражения (7-2) следует, что потери рвент пропорциональны третьей степени скорости вращения машины.

Общие механические потери

Рих = Рподш "Т Рвент ~Г Ртр.щ- ('"3)

Как следует из изложенного, в каждой данной машине потери рык зависят только от скорости вращения и не зависят от нагрузки. В машинах постоянного тока мощностью 10—500 кет потери pMS составляют соответственно около 2—0,5% от номинальной мощности машины.

Магнитные потери рмг включают в себя потери на гистерезис и вихревые токи, вызванные перемагничиванием сердечников активной стали (см. § В-4). Для вычисления этих потерь сердечник подразделяется на части, в каждой из которых магнитная индукция постоянна. Например, в машинах постоянного тока вычисляются отдельно потери в сердечнике якоря

Здесь р/5о и Pie/so — удельные потери в стали на единицу веса при частоте / = 50 гц и индукциях соответственно В = 1,0 тпл и В = 1,5 тл; Ва и Bz — средние значения индукции в спинке якоря и зубцах, Gca и Gcz — веса стали спинки якоря и зубцов; km и &дг — коэффициенты, учитывающие увеличение потерь вследствие обработки стали (наклеп при штамповке, замыкание листов в пакете), из-за неравномерности распределения индукции и несинусоидальности закона изменения индукции во времени.

В машинах постоянного тока можно принять km 3,6 и kKZ — = 4,0.

К магнитным потерям относят также такие добавочные потери, которые зависят от величины основного потока машины (потока полюсов) и вызваны зубчатым строением сердечников. Эти потери иногда называют также добавочными, потерями холостого хода, так как они существуют в возбужденной машине уже при холостом ходе.

К указанным потерям в машинах постоянного тока относятся прежде всего поверхностные потери рпов в полюсных наконечниках, обусловленные зубчатостью якоря. Ввиду наличия зубцов и пазов на вращающемся якоре магнитная индукция в каждой точке поверхности полюсного наконечника пульсирует (см. рис. 2-4) с частотой

будучи максимальной, когда против рассматриваемой точки находится ^убец якоря, и минимальной, когда против этой точки находится паз якоря. Вследствие этого в полюсных наконечниках индуктируются вихревые токи, причем они протекают только в тонком поверхностном слое, так как fz имеет порядок тысячи и более герц. Величина этих потерь зависит от 1) величины пульсаций индукции, которая больше при открытых пазах на якоре, 2) частоты пульсаций fz и 3) толщины листов стали полюсов и степени их изолированности друг от друга на поверхности наконечника полюса.

Если пазы имеются также в полюсных наконечниках машины постоянного тока (при наличии компенсационной обмотки), то в зубцах якоря и полюсах в результате их взаимного перемещения возникают пульсации магнитного потока. Потоки в зубцах максимальны, когда зубец якоря расположен против зубца полюса, и минимальны, когда против зубца расположен паз. Частота этих пульсаций также велика. При этом возникают пульсационные потери рпульс в зубцах и поверхностные потери также на внешней поверхности якоря.

Подобные же поверхностные и пульсационные потери, вызванные зубчатым строением сердечников и зависящие от величины основного магнитного потока, возникают также в машинах переменного тока. Потери рпов и рпульс вычисляются по формулам, которые приводятся в курсах проектирования электрических машин.

К добавочным потерям холостого хода относятся также потери, которые возникают в проволочных бандажах, обмоткодержателях и в других деталях при их вращении в магнитном поле полюсов.

Общие магнитные потери

Электрические потери рВл в каждой обмотке вычисляют по формуле рЭл = Рг. Сопротивление обмотки зависит от ее температуры. Поэтому ГОСТ 183—66 предусматривает определение потерь в обмотках при расчетной температуре 75° С для классов изоляции обмоток А, Е и В и 115° С для классов F и Н. В нормальных машинах постоянного тока имеются две электрические цепи: цепь якоря и цепь возбуждения. Поэтому обычно рассчитывают потери в цепи якоря РэлоИ в цепи возбуждения рВлв.

Потери в обмотках можно выразить также через плотность тока в обмотке / и вес обмотки (без изоляции) G. Действительно,

Таким образом, формула (7-7) определяет потери в ваттах в медной обмотке весом G кг при 75° С и при плотности тока / а/мм2.

К электрическим потерям относят также потери в регулировочных реостатах и потери в переходных сопротивлениях щеточных контактов. Величина потерь в переходных сопротивлениях щеточных контактов для щеток одной полярности вычисляется по формуле

рая.щ = Аищ1, (7-8)

где At/m — падение напряжения на один щеточный контакт. Так как Л£Лц зависит сложным образом от разных величин и факторов,

то для упрощения расчетов, согласно ГОСТ 11828—66, принимается для угольных и графитных щеток Л£/щ = 1 в и для металлоуголь-ных щеток Д£/щ = 0,3 £.

Добавочные потери рд. К этой группе относят потери, вызванные различными вторичными явлениями при нагрузке машины. Поэтому указанные потери, зависящие от тока нагрузки, называют иногда также добавочными потерями при нагрузке.

В машинах постоянного тока одна часть рассматриваемых потерь возникает вследствие искажения кривой магнитного поля в воздушном зазоре при нагрузке под влиянием поперечной реакции якоря (см. § 5-1). В результате этого магнитный поток распределяется по зубцам и сечению спинки якоря неравномерно: с одного края полюсного наконечника индукция в зубцах и спинке якоря уменьшается, а<. другого края увеличивается. Такое неравномерное распределение потока вызывает увеличение магнитных потерь, подобно тому как неравномерное распределение тока в проводнике (например, в результате поверхностного эффекта) вызывает увеличение электрических потерь. Вследствие такого неравномерного распределения потока увеличиваются также поверхностные потери в полюсных наконечниках. При наличии компенсационной обмотки рассмотренная часть добавочных потерь практически отсутствует.

Другая часть добавочных потерь в машинах постоянного тока связана с коммутацией. При изменении во времени потоков рассеяния коммутируемых секций (см. рис. 6-9) в проводниках обмотки индуктируются вихревые токи. Добавочный ток коммутации также вызывает дополнительные потери.

Существуют также другие причины возникновения добавочных потерь (вихревые токи в крепежных деталях и т. п.).

Вследствие сложной природы добавочных потерь формулы для их вычисления получаются также сложными и, кроме того, не особенно точными. Экспериментальное определение этих потерь также затруднительно. Поэтому на практике добавочные потери чаще всего оценивают на основе опытных данных в виде определенного процента от номинальной мощности. Согласно ГОСТ 11828—66, эти потери для машин постоянного тока при номинальной нагрузке принимаются: при отсутствии компенсационной обмотки равными 1,0% и при наличии компенсационной обмотки равными 0,5% от отдаваемой мощности для генератора и проводимой мощности для двигателя. Для других нагрузок эти потери пересчитываются пропорционально квадрату тока нагрузки.

Все виды добавочных потерь, не связанные непосредственно с электрическими процессами в цепях обмоток машины, покрываются за счет механической мощности на валу машины.

Суммарные, или полные, потери р% представляют собой сумму всех потерь:

В качестве иллюстрации в табл. 7-1 приводятся данные о потерях в современной машине постоянного тока при номинальной нагрузке.

Таблица 7-1


Дата добавления: 2015-07-18; просмотров: 127 | Нарушение авторских прав


Читайте в этой же книге: Влияние реакции якоря на магнитный поток машины | Напряжения между коллекторными пластинами и компенсационная обмотка | Природа проводимости в щеточном контакте. | Причины искрения. | Процесс коммутации | Электродвижущие силы в коммутируемой секции | Определение реактивной э. д. с. | Взаимная индукция, форма кривой и величина реактивной | Способы улучшения коммутации | Коммутационная реакция якоря |
<== предыдущая страница | следующая страница ==>
Экспериментальная проверка и настройка коммутации| Коэффициент полезного действия

mybiblioteka.su - 2015-2025 год. (0.01 сек.)