Читайте также:
|
|
Несмотря на то, что для экономических временных рядов мультипликативная модель обычно оказывается наиболее подходящей, иногда требуется аддитивная модель. Рассмотрим аддитивную модель сезонных явлений с линейным ростом, предложенную Г. Тейлом и С. Вейджем.
Построение такой модели имеет целью упрощение процедуры прогнозирования, поскольку комбинация мультипликативной сезонной модели с линейным ростом математически громоздка. Кроме того, на практике чаще встречаются экспоненциальные тенденции, чем линейные. Поэтому замена значений первоначального временного ряда их логарифмами преобразует экспоненциальную тенденцию в линейную и одновременно мультипликативную сезонную модель в аддитивную. Тогда временной ряд (исходный или преобразованный) можно представить следующим образом:
где a 1,t— величина уровня процесса после элиминирования сезонных колебаний;
a2,t — аддитивный коэффициент роста;
gt — аддитивный коэффициент сезонности;
εt — белый шум.
Сначала рассмотрим адаптивную процедуру обновления значения . B момент t мы располагаем наблюдением xt, о котором известно, что
Однако о шуме и сезонном факторе gt никакой информации нет. Величину εt заменим нулем, а в качестве заменителя для gt возьмем самую последнюю оценку сезонного фактора gt-l, где l — период сезонного цикла. Величину будем рассматривать как новое ≪фактическое≫ значение a1,t. Последней оценкой уровня а1 является , но она соответствует моменту t -1, а не t.
Поэтому необходимо к добавить еще .Но так как оценку мы еще не можем получить, то вместо нее берем оценку , полученную на предыдущем шаге.
Это приводит к следующей процедуре адаптации:
которая при данных весах и оценивает а 1, t через наиболее свежее наблюдение xt и ранее подсчитанные величины .
Та же процедура применяется для получения оценки gt. Новое «фактическое» значение сезонного фактора будет , а старое значение равно , экспоненциально-сглаженное значение
Все три параметра сглаживания будут удовлетворять условию 0< α1, α2, α3 <1.
Адаптивное прогнозирование теперь провести сравнительно просто. Предположим, что t — текущий момент времени, так что имеются в нашем распоряжении. Предположим также, что мы хотим получить прогноз величины xt+τ(прогноз на τшагов вперед). Экстраполируем тенденцию линейного роста, используя самое последнее значение коэффициента , добавляем самую свежую оценку сезонного члена для этой фазы цикла и пренебрегаем шумом. В результате получаем
при условии, что 0 < τ< l. Если l < τ< 2 l, то необходимо заменить на .
Однако на практике удобнее осуществлять адаптивное регулирование с помощью уравнений, связывающих эти величины с ошибкой прогноза, сделанного в конце периода t — 1 на один шаг вперед.
МОДЕЛИ АВТОРЕГРЕССИИ — СКОЛЬЗЯЩЕГО СРЕДНЕГО (МЕТОД БОКСА —ДЖЕНКИНСА)
Для описания моделей потребуются следующие обозначения:
xt — значение ряда в момент t;
εt – белый шум с дисперсией .
Модель основывается на гипотезе, что изучаемый процесс является выходом линейного фильтра, на вход которого подан процесс белого шума, т. е. что член ряда xt является взвешенной суммой текущего и предыдущих значений входного потока:
где μ= const в общем случае является параметром, характеризующим процесс.
Если последовательность ψ1, ψ2, … конечна или бесконечна, но сходится, то процесс xt будет стационарным. Тогда μ — среднее значение, вокруг которого процесс варьирует. В противном случае xt — нестационарен и μ не имеет особого смысла, кроме как некой точки отсчета уровня процесса.
Дата добавления: 2015-07-17; просмотров: 81 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Прогнозирование с коэффициентами сезонности | | | в рамках реализации пилотного общественного проекта |