Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Аддитивная модель сезонных явлений

Читайте также:
  1. I. МОДЕЛЬ
  2. I. Модель мыслительного процесса.
  3. II. Учебно-информационная модель
  4. II.Модель с фиксированным уровнем запасов.
  5. IV Разрешение космологической идеи о всеобщей зависимости явлений по их существованию вообще
  6. Quot;Ньюландия" – игровая модель самоуправления
  7. V 1 Тема 2 Юридическая модель налогового правонарушения

Несмотря на то, что для экономических временных рядов мультипликативная модель обычно оказывается наиболее подходящей, иногда требуется аддитивная модель. Рассмотрим аддитивную модель сезонных явлений с линейным ростом, предложенную Г. Тейлом и С. Вейджем.

Построение такой модели имеет целью упрощение процедуры прогнозирования, поскольку комбинация мультипликативной сезонной модели с линейным ростом математически громоздка. Кроме того, на практике чаще встречаются экспоненциальные тенденции, чем линейные. Поэтому замена значений первоначального временного ряда их логарифмами преобразует экспоненциальную тенденцию в линейную и одновременно мультипликативную сезонную модель в аддитивную. Тогда временной ряд (исходный или преобразованный) можно представить следующим образом:

 

где a 1,t— величина уровня процесса после элиминирования сезонных колебаний;

a2,t — аддитивный коэффициент роста;

gt — аддитивный коэффициент сезонности;

εt — белый шум.

Сначала рассмотрим адаптивную процедуру обновления значения . B момент t мы располагаем наблюдением xt, о котором известно, что

Однако о шуме и сезонном факторе gt никакой информации нет. Величину εt заменим нулем, а в качестве заменителя для gt возьмем самую последнюю оценку сезонного фактора gt-l, где l — период сезонного цикла. Величину будем рассматривать как новое ≪фактическое≫ значение a1,t. Последней оценкой уровня а1 является , но она соответствует моменту t -1, а не t.

Поэтому необходимо к добавить еще .Но так как оценку мы еще не можем получить, то вместо нее берем оценку , полученную на предыдущем шаге.

Это приводит к следующей процедуре адаптации:

которая при данных весах и оценивает а 1, t через наиболее свежее наблюдение xt и ранее подсчитанные величины .

Та же процедура применяется для получения оценки gt. Новое «фактическое» значение сезонного фактора будет , а старое значение равно , экспоненциально-сглаженное значение

Все три параметра сглаживания будут удовлетворять условию 0< α1, α2, α3 <1.

Адаптивное прогнозирование теперь провести сравнительно просто. Предположим, что t — текущий момент времени, так что имеются в нашем распоряжении. Предположим также, что мы хотим получить прогноз величины xt+τ(прогноз на τшагов вперед). Экстраполируем тенденцию линейного роста, используя самое последнее значение коэффициента , добавляем самую свежую оценку сезонного члена для этой фазы цикла и пренебрегаем шумом. В результате получаем

при условии, что 0 < τ< l. Если l < τ< 2 l, то необходимо заменить на .

Однако на практике удобнее осуществлять адаптивное регулирование с помощью уравнений, связывающих эти величины с ошибкой прогноза, сделанного в конце периода t — 1 на один шаг вперед.

 

МОДЕЛИ АВТОРЕГРЕССИИ — СКОЛЬЗЯЩЕГО СРЕДНЕГО (МЕТОД БОКСА —ДЖЕНКИНСА)

 

Для описания моделей потребуются следующие обозначения:

xt — значение ряда в момент t;

εt – белый шум с дисперсией .

Модель основывается на гипотезе, что изучаемый процесс является выходом линейного фильтра, на вход которого подан процесс белого шума, т. е. что член ряда xt является взвешенной суммой текущего и предыдущих значений входного потока:

где μ= const в общем случае является параметром, характеризующим процесс.

Если последовательность ψ1, ψ2, … конечна или бесконечна, но сходится, то процесс xt будет стационарным. Тогда μ — среднее значение, вокруг которого процесс варьирует. В противном случае xt — нестационарен и μ не имеет особого смысла, кроме как некой точки отсчета уровня процесса.

 


Дата добавления: 2015-07-17; просмотров: 81 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Прогнозирование с коэффициентами сезонности| в рамках реализации пилотного общественного проекта

mybiblioteka.su - 2015-2024 год. (0.007 сек.)