Читайте также:
|
|
Векторные диаграммы можно считать вариантом (и иллюстрацией) представления колебаний в виде комплексных чисел. При таком сопоставлении ось Ox соответствует оси действительных чисел, а ось Oy - оси чисто мнимых чисел (положительный единичный вектор вдоль которой есть мнимая единица).
Тогда вектор длиной A, вращающийся в комплексной плоскости с постоянной угловой скоростью ω с начальным углом φ0 запишется как комплексное число
а его действительная часть
-есть гармоническое колебание с циклической частотой ω и начальной фазой φ0.
Хотя, как видно уже из вышесказанного, векторные диаграммы и комплексное представление колебаний теснейшим образом связаны и по сути представляют собой варианты или разные стороны одного и того же метода, они, тем не менее, обладают своими особенностями и могут применяться и по отдельности.
Метод векторных диаграмм может излагаться отдельно в курсах электротехники или элементарной физики, если по тем или иным причинам (обычно связанным с умеренным уровнем математической подготовки учащихся и недостатком времени) надо избежать использования комплексных чисел (в явном виде) вообще.
Метод комплексного представления (который при необходимости или желании может включать и графическое представление, что, правда, совершенно не обязательно и иногда излишне) вообще говоря более мощен, т.к. естественно включает в себя, например, составление и решение систем уравнений любой сложности, в то время как метод векторных диаграмм в чистом виде всё же ограничен задачами, подразумевающим суммирование, которое можно изобразить на одном чертеже.
Однако метод векторных диаграмм (в чистом виде или в качестве графической составляющей метода комплексного представления) - более нагляден, а значит в некоторых случаях потенциально более надежен (позволяет до некоторой степени избежать грубых случайных ошибок, которые могут встречаться при абстрактных алгебраических вычислениях) и позволяет в некоторых случаях достичь в каком-то смысле более глубокого понимания задачи.
7. записать ураснени движения, установившемся решением которого являются вынужденные колебания. Чему равна частота вынужденных колебаний?
В случае вынужденных колебаний система колеблется под действием внешней (вынуждающей) силы, и за счет работы этой силы периодически компенсируются потери энергии системы. Частота вынужденных колебаний (вынуждающая частота) зависит от частоты изменения внешней силы Определим амплитуду вынужденных колебаний тела массой m, считая колебания незатухающими вследствие постоянно действующей силы Fен.
Пусть эта сила изменяется со временем по закону Fен= F0cosωt, где F0 амплитуда вынуждающей силы Fен. Возвращающая сила Fупр=-kx и сила сопротивления Fсоп=-rv Тогда второй закон Ньютона можно записать в следующем виде:
ma=-kx-rv-F0cosωt
или
(7.21)
Предположим, что возникающее под действием силы установившиеся вынужденные колебания системы также являются гармоническими: x=Asin(ωt+ϕ0) (7.22) причем их циклическая частота равна циклической частоте ω вынуждающей силы.
Дифференцируя два раза (7.22) и подставляя в (7.21), получим
Обозначим:
Тогда последнее равенство можно записать в следующем виде:
Правую часть этого выражения можно рассматривать как уравнение некоторого гармонического колебания, получившегося при сложении трех гармонических колебаний, определяемых слагаемыми левой части этого равенства. Для сложения этих колебаний воспользуемся методом векторных диаграмм. Проведем опорную линию ОХ (рис. 1.9) и отложим под углами, соответствующими начальным фазам всех четырех колебаний векторы 1, 2, 3 и 4 их амплитуды таким образом, чтобы
4= 1+ 2+ 3
Из рис. 7.9 видно, что А42=(А3-А1)2+А22 Подставляя в последнее значения соответствующих амплитуд (1.22), получим:
Отсюда
(7.23)
Амплитуда установившихся вынужденных колебаний прямо пропорциональна амплитуде вынуждающей силы F0, обратно пропорциональна массе m системы и уменьшается с увеличением коэффициента затухания β. При постоянных F0, m и β амплитуда зависит только от соотношения циклических частот вынуждающей силы β и свободных незатухающих колебаний системы ω0. При циклической частоте вынуждающей силы ω=0 амплитуда колебаний . В этом случае колебания не совершаются и смещение при вынужденных колебаниях равно статической деформации под действием постоянной силы F0:
Поэтому отклонение A0 иногда называют статической амплитудой.
Если нет диссипации т.е β=0, то амплитуда колебаний
растет с увеличением циклической частоты ω вынуждающей силы Fвн и при ω=ω0 становится бесконечно большой (рис. 7.10). При дальнейшем росте циклической частоты ω амплитуда А вынужденных колебаний уменьшается, причем
Явление резкого возрастания амплитуды вынужденных колебаний при приближении вынуждающей частоты ω к частоте собственных колебаний системы ω0 называется резонансом.
Если затухание существует , то амплитуда вынужденных колебаний достигает максимального значения, когда знаменатель правой части для уравнения (7.23) достигает минимума. Приравнивая нулю первую производную по ω от подкоренного выражения, получим условие его минимума, для которого , где ωрез - называют резонансной частотой. ωрез обозначает то значение циклической частоты ω вынуждающей силы, при котором A=Amax.
Из последней формулы следует, что для консервативной системы (β=0) ωрез=ω0, а для диссипативной системы ωрез несколько меньше собственной циклический частоты. С увеличением коэффициента затухания ω явление резонанса проявляется все слабее, и, наконец при исчезает совсем.
Явление резонанса используется для усиления колебаний, например, электромагнитных. Однако при конструировании различных машин и сооружений необходимо учитывать даже самую небольшую периодическую силу с тем, чтобы предотвратить нежелательные последствия резонанса.
8. В чем заключается явление резонанса? Записать выражение для резонансной частоты
явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды — это лишь следствие резонанса, а причина — совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс — явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы. Степень отзывчивости в теории колебаний описывается величиной, называемой добротность. Явление резонанса впервые было описано Галилео Галилеем в 1602 г в работах, посвященных исследованию маятников и музыкальных струн.амплитуда установившихся вынужденных колебаний достигает своего наибольшего значения при условии что частота вынуждающей силы равна собственной частоте колебательной системы
резонансная частота w р - , |
9.Какие процессы называются волновыми? Что такое длина волны, волновая поверхность, фронт волны?
Процесс распространения колебаний в сплошной среде называется волновым процессом (или волной). При распространении волны частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь состояние колебательного движения и его энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества.
ДЛИНА ВОЛНЫ (l) – расстояние, на которое распространяется волна за время, равное периоду колебаний в ней.
Геометрическое место точек, колеблющихся в одной фазе, называется волновой поверхностью.
Волновая поверхность, отделяющая часть пространства, в которой колебания происходят, от той части, где еще нет колебаний, называется фронтом волны.
10.Записать уравнение плоской и сферической упругих волн; что таоке волновой вектор?
Уравнением волны называется выражение, которое дает смещение колеблющейся точки как функцию ее координат (x, y, z) и времени t.
. | (5.2.1) |
Эта функция должна быть периодической как относительно времени, так и координат (волна – это распространяющееся колебание, следовательно периодически повторяющееся движение). Кроме того, точки, отстоящие друг от друга на расстоянии l, колеблются одинаковым образом.
Уравнение плоской волны
Найдем вид функции x в случае плоской волны, предполагая, что колебания носят гармонический характер.
Направим оси координат так, чтобы ось x совпадала с направлением распространения волны. Тогда волновая поверхность будет перпендикулярна оси x. Так как все точки волновой поверхности колеблются одинаково, смещение x будет зависеть только от х и t: . Пусть колебание точек, лежащих в плоскости , имеет вид (при начальной фазе )
(5.2.2) |
Найдем вид колебания частиц в плоскости, соответствующей произвольному значению x. Чтобы пройти путь x, необходимо время .
Следовательно, колебания частиц в плоскости x будут отставать по времени на t от колебаний частиц в плоскости , т.е.
, | (5.2.3) |
– это уравнение плоской волны.
Таким образом, x есть смещение любой из точек с координатой x в момент времени t. При выводе мы предполагали, что амплитуда колебания . Это будет, если энергия волны не поглощается средой.
Такой же вид уравнение (5.2.3) будет иметь, если колебания распространяются вдоль оси y или z.
В общем виде уравнение плоской волны записывается так:
, или . | (5.2.4) |
Выражения (5.2.3) и (5.2.4) есть уравнения бегущей волны.
Уравнение (5.2.3) описывает волну, распространяющуюся в сторону увеличения x. Волна, распространяющаяся в противоположном направлении, имеет вид:
.
Уравнение волны можно записать и в другом виде.
Введем волновое число , или в векторной форме:
, | (5.2.5) |
где – волновой вектор, – нормаль к волновой поверхности.
Так как , то . Отсюда . Тогда уравнение плоской волны запишется так:
. | (5.2.6) |
Уравнение сферической волны
В случае, когда скорость волны υ во всех направлениях постоянна, а источник точечный, волна будет сферической.
Предположим, что фаза колебаний источника равна w t (т.е. ). Тогда точки, лежащие на волновой поверхности радиуса r, будут иметь фазу . Амплитуда колебаний здесь, даже если волна не поглощается средой, не будет постоянной, она убывает по закону . Следовательно, уравнение сферической волны:
, или , | (5.2.7) |
где А равна амплитуде на расстоянии от источника равном единице.
Уравнение (5.2.7) неприменимо для малых r, т.к. при , амплитуда стремится к бесконечности. То, что амплитуда колебаний , следует из рассмотрения энергии, переносимой волной.
Волновой вектор — вектор, направление которого перпендикулярно фазовому фронту бегущей волны, а абсолютное значение равно волновому числу.
Волновой вектор обычно обозначается латинской буквой и измеряется в обратных сантиметрах.
Волновое число связано с длиной волны λ соотношением:
.
Связь между волновым вектором и частотой задаётся законом дисперсии. Все возможные значения волновых векторов образуют обратное пространство или k-пространство.
Дата добавления: 2015-07-16; просмотров: 229 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Записать уравнение движения, решением которого являются затухающие (свободные) колебания; чему равна частота затухающих колебаний | | | Класифікація конструктивних елементів |