Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Моделирование простейших СМО

Читайте также:
  1. Билет 24. Вопрос 1. Электрическое аналоговое моделирование. Исследование моделей из сплошных проводящих сред и сетки сопротивлений для моделирования стационарных полей.
  2. Билет 25. Вопрос 1. Электрическое аналоговое моделирование. Исследование моделей из сплошных проводящих сред и сетки сопротивлений для моделирования стационарных полей.
  3. Введение. Моделирование объектов и систем управления.
  4. Взаимодействие бактерий и простейших активного ила. Сукцессия биоценоза активного ила.
  5. Вопрос 2. Аналоговое моделирование физических полей. Коэффициенты аналогии, индикаторы аналогии.
  6. Вопрос 2. Аналоговое моделирование. Принцип аналогии.
  7. Вопрос 2. Моделирование на макроуровне и микроуровне: общая характеристика математических моделей и виды задач, решаемых на каждом уровне.

Требуется определить пропускную способность вычислительного узла, содержащего вычислительный прибор и очередь команд.

Пример выполнения работы

Задание:

Интенсивность формирования команд .

Длительность выполнения команды .

3.1.1. Теоретический расчет результатов моделирования (подготовить заранее)

1. Построить временные диаграммы функционирования системы:

– поступления заявок;

– обслуживания заявок в приборе;

– состояния очереди.

2. Определить или вычислить:

– максимальную длину очереди;

– среднюю длину очереди;

– среднее время ожидания заявки в очереди;

– среднее время ожидания заявки в очереди без учета «нулевых» входов;

– коэффициент загрузки прибора.

Расчет

Ниже приводимый расчет выполнен для моделирования 1000 единиц модельного времени.

Времена появления i -х заявок 1-го сегмента модели рассчитываются согласно зависимости:

. (1)

По формуле (1) получены времена появления заявок 1-го сегмента модели: 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000.

Времена обслуживания заявок 1-го сегмента модели в приборе:

– первая заявка: 100 (время начала обслуживания) – 209 (время конца обслуж.);

– вторая заявка: 210 – 319;

– третья заявка: 320 – 429;

– четвертая заявка: 430 – 539;

– пятая заявка: 540 – 649;

– пятая заявка: 540 – 649;

– шестая заявка: 650 – 759;

– седьмая заявка: 760 – 869;

– восьмая заявка: 870 – 979;

– девятая заявка: 980 – 1000; (в момент 1000 – завершение моделирования)

Длина первой очереди: 0 (время: 1 – 199), 1 (200 – 219), 0 (220 – 299), 1 (300 – 329), 0 (330 – 399), 1 (400 – 439), 0 (440 – 499), 1 (500 – 549), 0 (550 – 599), 1 (600 – 659), 0 (660 – 699), 1 (700 – 769), 0 (770 – 799), 1 (800 – 879), 0 (880 – 899), 1 (900 – 989), 0 (990 – 999).

Максимальная длина очереди = 1.

Средняя длина очереди = (0*560 + 1*440)/1000 = 0,440.

Среднее время ожидания заявки в очереди определяется следующим образом:

, (2)

где – число обслуженных заявок за заданное время моделирования;

– время ожидания i -й заявки в очереди, определяемое выражением:

, (3)

где – время начала обслуживания i -й заявки;

По формулам (2) и (3) вычислено среднее время ожидания заявки очереди:

,

Среднее время ожидания заявки в очереди без учета нулевых входов = (10 + 20 + 30 + 40 + 50 + 60 +70 +80) / 8 = 45.

Коэффициент загрузки прибора = (0*100 + 1*900) / 1000 = 0,9.


Дата добавления: 2015-07-15; просмотров: 72 | Нарушение авторских прав


Читайте в этой же книге: Моделирование работы передающего устройства видеопакетов | Теоретический расчет результатов моделирования | Моделирование работы многоканального устройства |
<== предыдущая страница | следующая страница ==>
Общие сведения о языке GPSS| Моделирование в GPSS

mybiblioteka.su - 2015-2024 год. (0.006 сек.)