Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Вопрос 35 Понятие и классификация моделей

Читайте также:
  1. DПонятиеdиdзначение государственных гарантий на гражданской службе
  2. DПонятиеdиdзначениеdгосударственныхdгарантийdнаdгражданскойdслужбе
  3. I. Понятие кредитного договора. Принципы кредитования.
  4. I. Понятие, предмет, система исполнительного производства
  5. I.2. Классификация усилителей.
  6. II Сибирское шоу масштабных моделей, 14-15.03.2015
  7. II. Квалификация и классификация

Моделирование построено на использовании разнообразных мо­делей, что обусловливает необходимость определения ее понятия и классификацию моделей, применяемых в системном анализе.

Модель - это такой материальный или мысленно представляе­мый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.

По своей природе модели делятся на физические, символиче­ские и смешанные.

Физические модели воплощены в каких-либо материальных объ­ектах, имеющих естественное или искусственное происхождение (ото­бранные в природе или созданные человеком для целей исследова­ния), и подразделяются на модели подобия и аналоговые. Первые ха­рактеризуются масштабными изменениями, выбираемыми в соответст­вии с критериями подобия, вторые - основаны на известных аналогиях между протеканием процессов в различных системах. Примером анало­говой модели является экономический эксперимент, когда результаты экспериментирования на одном или нескольких предприятиях перено­сятся на совокупность объектов близкой экономической природы.

Символические модели характеризуются тем, что параметры ре­ального объекта и отношения между ними представлены символами: семантическими (словами), математическими, логическими. Класс символических моделей весьма широк. Наряду со словесными описа­ниями функционирования объектов - сценариями - сюда также отно­сятся схематические модели: графики и блок-схемы, логические блок-схемы (например, алгоритмы программ) и таблицы решений, номо­граммы, а также математические описания - математические модели.

Смешанные модели применяются тогда, когда часть элементов и процессов не удается описать символами, и они моделируются физи­чески. К ним относятся также человеко-машинные модели, в которых имеется программа, реализующая на ЭВМ некоторую математическую модель, плюс человек, принимающий решение за счет обмена инфор­мацией с ней.

По целевому назначению различают модели структуры, функ­ционирования и стоимостные (модели расхода ресурсов).

Модели структуры отображают связи между компонентами объекта и внешней средой и подразделяются на:

- канонические модели, характеризующие взаимодействие объ­екта с окружением через входы и выходы:

- модели внутренней структуры, характеризующие состав компо­нентов объекта и связи между ними;

- модели иерархической структуры (дерево системы), в которых объект расчленяется на элементы более низкого уровня, действия ко­торых подчинены интересам целого.

Модели структуры обычно представлены в виде блок-схем, реже графов и матриц связей.

Модели функционирования включают широкий спектр симво­лических моделей:

- модели жизненного цикла системы, описывающие процессы существования систем от зарождения замысла их создания до пре­кращения функционирования;

- модели операций, выполняемых объектами и представляющих описание взаимосвязанной совокупности процессов функционирова­ния отдельных элементов объекта при реализации тех или иных функ­ций объектов;

- информационные модели, отображающие во взаимосвязи ис­точники и потребителей информации, виды информации, характер ее преобразования, а также временные и количественные характеристики данных;

- процедурные модели, описывающие порядок взаимодействия элементов исследуемого объекта при выполнении различных опера­ций, в частности, реализации процедур принятия управленческих ре­шений;

- временные модели, описывающие процедуру функционирова­ния объектов во времени и распределение ресурса "время" по отдель­ным компонентам объекта.

Стоимостные модели, как правило, сопровождают модели функционирования объекта и по отношению к ним вторичны. Их со­вместное использование позволяет проводить комплексную технико-экономическую оценку объекта или его оптимизацию по экономиче­ским критериям.

В зависимости от степени формализации связей между фак­торами различают аналитические и алгоритмические модели.

Аналитические модели предполагают запись математической модели в виде алгебраических уравнений и неравенств, не имеющих разветвлений вычислительного процесса, при определении значений любых переменных, состояния модели, целевой функции и уравнений связи.

Алгоритмические модели описывают критерии и ограничения математическими конструкциями, включающими логические условия, приводящие к разветвлению вычислительного процесса. Они приме­няются, когда модель сложной системы гораздо легче построить в ви­де алгоритма, показывающего отношения между элементами системы в процессе ее функционирования, задаваемые обычно в виде логиче­ских условий - разветвлений хода течения процесса. Тематическое описание для элементов может быть очень простым, однако взаимо­действие большого количества простых, по математическому описа­нию, элементов позволяет описать сложность системы.

В зависимости от наличия случайных факторов различают стохастические и детерминированные модели.

В детерминированных моделях ни целевая функция, ни уравне­ния связи не содержат случайных факторов и для данного множества выходных значений модели, может быть получен один-единственный результат.

Для стохастических моделей характерно наличие факторов, ко­торые имеют вероятностную природу и характеризуются какими-либо законами распределения, а среди функций могут быть и случайные. Значения выходных характеристик в таких моделях могут быть пред­сказаны только в вероятностном смысле. Реализация таких моделей в большинстве случаев осуществляется методами имитационного мо­делирования.

В зависимости от фактора времени различают динамические и статические модели.

Модели, в которых входные факторы, а, следовательно, и ре­зультаты моделирования явно зависят от времени, называются дина­мическими, а модели, в которых зависимость от времени либо отсут­ствует совсем, либо проявляется слабо или неясно, называются ста­тическими.


Вопрос 36. структура и процесс моделирования содержание этапов.

Моделирование систем - это метод, с помощью которого, варь­ируя в эксперименте потоки материалов или предметов через опера­ции или процессы, можно определить влияние изменений различных переменных в системе. Моделирование представляет собой средство опытной проверки идей и представлений в условиях, которые невоз­можно было бы создать для реального эксперимента, учитывая свя­занные с этим затраты, время и риск. Это метод накопления опыта и обучения, результатом которого может быть разработка новой и луч­шей системы, оценка нескольких альтернативных систем или нахож­дение лучшего способа функционирования заданной системы. Моде­лирование по существу своему является заменой практического опы­та, который иначе был бы слишком дорог, продолжителен и рискован. Может оказаться, что специалисты моделирования, накопившие успешный опыт его применения, ориентируются в методике, но не ориентируются в постановке проблемы или в возможностях, имею­щихся в той или иной области. Они склонны применять эту методику независимо от того, существует ли сама проблема или возможность практического ее решения. Необходимо помнить, что моделирование систем представляет собой орудие исследования, и никто не может заранее предсказать, какими методами выразить лучшее понимание системы. Суждение от­носительно целесообразности усилий, направленных на создание мо­дели системы, должно основываться на рассматриваемой системе и ясном представлении, что в некоторых случаях эти усилия могут дать лишь незначительный результат. Процесс моделирования обязательно включает и построение аб­стракций и умозаключения по аналогии и конструирование новых сис­тем. Основная особенность моделирования в том, что это метод опо­средованного познания с помощью объектов заменителей. Модель выступает как своеобразный инструмент познания, который исследо­ватель ставит между собой и объектом и с помощью которого изучает интересующий его объект. Процесс моделирования включает три элемента: субъект (ис­следователь); объект исследования; модель, опосредующая отноше­ние познающего субъекта и познаваемого объекта. Первый этап моделирования - построение модели. Он пред­полагает наличие некоторых знаний об объекте - оригинале. На этом этапе важен вопрос о необходимой и достаточной мере сходства ори­гинала и модели. Любая модель замещает оригинал лишь в строго ог­раниченном смысле, и изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Из этого следует, что для одного объекта может быть построено несколько специализированных моделей, концентрирующих внимание на опре­деленных сторонах исследуемого объекта ила же характеризующих объект с разной степенью детализации.

При разработке модели должны соблюдаться следующие прин­ципы:

1. Принцип компромисса между ожидаемой точностью резуль­татов моделирования и сложностью модели. В соответствии с этим принципом в процессе создания модели устанавливается разумный компромисс с использованием критерия "точность модели - затраты на создание модели". 2. Принцип баланса, точности требует соразмерности систе­матической погрешности моделирования и случайной погрешности в задании параметров описания. Этот принцип устанавливает требова­ние соответствия между точностью исходных данных и точностью мо­дели, между точностью отдельных элементов модели, между система­тической погрешностью модели и случайной погрешностью при интер­претации и усреднении результатов. 3. Принцип разнообразия элементов модели, в соответствии с которым количество элементов должно быть достаточным для прове­дения конкретных исследований 4. Принцип наглядности модели трактует, что при прочих рав­ных условиях модель, которая привычна, удобна, построена на обще­принятых терминах, обеспечивает, как правило, более значительные результаты, чем менее удобная и наглядная 5. Принцип блочного представления модели. Для его реали­зации следует соблюдать следующие правила:

- обмен информацией между блоками должен быть минималь­ным;

- блок модели, мало влияющей на интерпретацию результатов моделирования, является несущественным и подлежащим удалению;

- блок модели, осуществляющий взаимодействие с исследуемой частью системы, можно заменить множеством упрощенных эквивален­тов, не зависящих от исследуемой части, при этом моделирование проводится в нескольких вариантах по каждому упрощенному эквива­ленту;

- при упрощении блока, воздействующего на исследуемую часть системы, следует рассмотреть возможность прямого упрощения замк­нутого контура без разрыва обратной связи. Для этого блок заменяют вероятным эквивалентом с оценкой его статистических характеристик, полученных путем автономного исследования упрощенного блока;

- замена блока воздействиями, наихудшими по отношению к ис­следуемой части системы Прежде чем использовать модель необходимо в процессе ис­следования проверить, отвечает ли она предъявляемым требованиям:

- полноты, адаптивности, возможности включения достаточно широких изменений;

- быть достаточно абстрактной, чтобы допускать варьирование большим числом переменных. Вместе с тем при стремлении к абст­рактности необходимо контролировать, чтобы не были утеряны физи­ческий смысл и возможность оценки полученных результатов;

- быть ориентированной на реализацию с помощью существую­щих технических средств, то есть должна быть осуществлена на имеющемся уровне развития техники с учетом ограничений конкретно­го исследователя;

- удовлетворять требованиям и условиям, ограничивающим время решения задачи. При исследовании в реальном масштабе вре­мени допустимое время решения определяется ритмом функциониро­вания объекта при нештатных ситуациях;

- обеспечивать получение полезной информации об объекте для решения поставленных задач исследования. В качестве непременных требований к исследовательским моделям выступают обеспечение заданной достоверности, точности результата при минимальных за­тратах на их разработку. В социально-экономических системах ин­формация, полученная с помощью модели, должна обеспечить расчет значений и позволить определить шаги поиска оптимального решения;

- по возможности строиться с использованием общепринятой терминологии;

- предусматривать возможность проверки соответствия ее ориги­налу, проверки адекватности;

- обладать устойчивостью по отношению к ошибкам в исходных данных. Это требование особенно важно в условиях низкой точности исходных данных.

Второй этап моделирования - изучение модели. Здесь мо­дель выступает как состоятельный объект исследования. Одной из форм такого исследования является проведение экспериментов, при которых сознательно изменяются условия функционирования модели и систематизируются данные о ее поведении. Конечным результатом этого этапа является совокупность знаний о модели. Третий этап моделирования - перенос знаний с модели на оригинал. Этот процесс проводится по определенным правилам. Зна­ния о модели должны быть скорректированы с учетом тех свойств объекта - оригинала, которые не нашли отражения или были измене­ны при построении модели. Четвертый этап моделирования -практическая проверка по­лученных с помощью модели знаний и их использование при построении обобщенной теории объекта, его преобразования или управления им. В итоге происходит возвращение к проблематике реального объекта. Моделирование представляет собой циклический процесс. Это оз­начает, что за первым четырехэтапным циклом может последовать вто­рой, третий и т.д. При этом знания об исследуемом объекте расширяют­ся, а исходная модель постепенно совершенствуются. Недостатки, об­наруженные после первого цикла моделирования, обусловленные ма­лым знанием объекта и ошибками в построении модели, можно испра­вить в последующих циклах. Таким образом, в методологии моделиро­вания заложены большие возможности саморазвития.


Дата добавления: 2015-07-15; просмотров: 155 | Нарушение авторских прав


Читайте в этой же книге: Вопрос 13 Понятие цели, иерархичность целей и требования к формированию целей | Вопрос 14 Критерии и их место при проведении системного анализа | Вопрос 16. Методы системного анализа. | Вопрос 19 Классификация экспертных методов | Вопрос 20 Индивидуальные методы экспертных оценок | Вопрос 21 Коллективная экспертиза | Вопрос 29 Элементы сетевых моделей | Вопрос 30 Правила построения сетевых моделей | Вопрос 31 Временные параметры элементов сетевого графика | Расчет параметров работ сетевого графика |
<== предыдущая страница | следующая страница ==>
Вопрос 34 Моделирование в системном анализе| Вопрос 37 Имитационное моделирование в исследовании и управлении

mybiblioteka.su - 2015-2025 год. (0.01 сек.)