Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Ряды Тейлора и Маклорена. Как известно, для любой функции определенной в окрестности точки и имеющей в ней

Читайте также:
  1. Если применить к той же функции формулу Маклорена
  2. Коэффициенты Тейлора. Ряд Тейлора.
  3. Научный менеджмент Тейлора конспект
  4. Разложение в ряд Маклорена некоторых функций
  5. Разложение функции в ряд Тейлора в Maxima
  6. Разложение функций в ряд Тейлора.
  7. Ряди Тейлора та Маклорена.

 

Как известно, для любой функции определенной в окрестности точки и имеющей в ней производные до (n+1)- го порядка включительно, справедлива формула Тейлора:

где – остаточный член в форме Лагранжа. Число с можно записать в виде , где . Формулу кратко можно записать в виде , где – многочлен Тейлора.

 

Если функция имеет производные любых порядков в окрестности точки и остаточный член стремится к нулю при , то из формулы Тейлора получается разложение функции по степеням , называемое рядом Тейлора:

Если в ряде Тейлора положить , то получим разложение функции по степеням х в так называемый ряд Маклорена:

Отметим, что ряд Тейлора можно формально построить для любой бесконечно дифференцируемой функции в окрестности точки . Но отсюда еще не следует, что он будет сходиться к данной функции ; он может оказаться расходящимся или сходиться, но не к функции .

 


Дата добавления: 2015-07-18; просмотров: 78 | Нарушение авторских прав


Читайте в этой же книге: Ряд геометрической прогрессии | Теорема. | Теорема1. | Теорема | Обобщенный гармонический ряд | Знакочередующиеся ряды | Свойства абсолютно сходящихся рядов. | Степенные ряды | Приближенное вычисление значений функции |
<== предыдущая страница | следующая страница ==>
Интервал и радиус сходимости степенного ряда| Теорема2

mybiblioteka.su - 2015-2024 год. (0.006 сек.)