Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Свойства абсолютно сходящихся рядов.

Читайте также:
  1. II.7. Свойства усилительных элементов при различных способах
  2. III. Вещное право, как абсолютное право.
  3. III.1. Физические свойства и величины
  4. III.3. Влияние обратной связи на свойства усилителя.
  5. XI. ПРИСПОСОБЛЕНИЕ И ДРУГИЕ ЭЛЕМЕНТЫ, СВОЙСТВА. СПОСОБНОСТИ И ДАРОВАНИЯ АРТИСТА
  6. А. ХАРАКТЕРНЫЕ СВОЙСТВА КАЖДОГО ОРГАНА
  7. АБРАЗИВНЫЕ МАТЕРИАЛЫ И ИХ ОСНОВНЫЕ СВОЙСТВА

Знакопеременный ряд называется абсолютно сходящимся, если ряд, составленный из модулей его членов, сходится.

Знакопеременный ряд называется условно сходящимся, если сам сходится, а ряд, составленный из модулей его членов, расходится.

Среди знакопеременных рядов абсолютно сходящиеся ряды занимают особое место: на такие ряды переносятся основные свойства конечных сумм:

  1. Если ряд абсолютно сходится и имеет сумму S, то ряд, полученный из него перестановкой членов, также сходится и имеет ту же сумму S, что и исходный ряд (теорема Дирихле)
  2. Абсолютно сходящиеся ряды с суммами и можно почленно складывать (вычитать). В результате получается абсолютно сходящийся ряд, сумма которого равна + (или соответственно - )
  3. Под произведением двух рядов и понимают ряд вида

Произведение двух абсолютно сходящихся рядов с суммами и есть абсолютно сходящийся ряд, сумма которого равна .

 

 


Дата добавления: 2015-07-18; просмотров: 77 | Нарушение авторских прав


Читайте в этой же книге: Ряд геометрической прогрессии | Теорема. | Теорема1. | Теорема | Обобщенный гармонический ряд | Интервал и радиус сходимости степенного ряда | Ряды Тейлора и Маклорена | Теорема2 | Приближенное вычисление значений функции |
<== предыдущая страница | следующая страница ==>
Знакочередующиеся ряды| Степенные ряды

mybiblioteka.su - 2015-2025 год. (0.005 сек.)