Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Теорема2

Если модули всех производных функций ограничены в окрестности точки одним и тем же числом М>0, то для любого х из этой окрестности ряд Тейлора функции сходится к функции , т.е. имеет место разложение .

 

Согласно теореме1, достаточно показать, что 0. По условию теоремы2 для любого n имеет место неравенство . Тогда имеем:

Осталось показать, что . Для этого рассмотрим ряд

Так как , то по признаку Даламбера этот ряд сходится на всей числовой оси. Но тогда, в силу необходимого признака сходимости,

Следовательно, 0

 

Разложение некоторых элементарных функций в ряд Тейлора (Маклорена)

 

Для разложения функции в ряд Маклорена нужно:

А) найти производные , ,…, ,..;

Б) вычислить значения производных в точке ;

В) написать ряд для заданной функции и найти его интервал сходимости;

Ґ) найти интервал (-R;R), в котором остаточный член ряда Маклорена при . Если такой интервал существует, то в нем функция и сумма ряда Маклорена совпадают.

 

Приведем таблицу, содержащую разложения в ряд Маклорена некоторых элементарных функций:

 

 


Дата добавления: 2015-07-18; просмотров: 55 | Нарушение авторских прав


Читайте в этой же книге: Ряд геометрической прогрессии | Теорема. | Теорема1. | Теорема | Обобщенный гармонический ряд | Знакочередующиеся ряды | Свойства абсолютно сходящихся рядов. | Степенные ряды | Интервал и радиус сходимости степенного ряда |
<== предыдущая страница | следующая страница ==>
Ряды Тейлора и Маклорена| Приближенное вычисление значений функции

mybiblioteka.su - 2015-2024 год. (0.005 сек.)