Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Свойства живых систем

Читайте также:
  1. I. Осознание потребности в реорганизации системы
  2. I. Система прерываний программ в ПК
  3. II. Определение возможного способа разработки системы.
  4. II. Система зажигания
  5. II. Система ролей.
  6. III. КУЛЬТУРА КАК СИСТЕМА ЦЕННОСТЕЙ
  7. III. Определение параметров новой системы

Русским физиком М. В. Волькенштейном предложено следующее определение жизни: «Живые тела, существующие на Земле, представ­ляют собой открытые, саморегулирующиеся и самовоспроизводящие­ся системы, построенные из биополимеров – белков и нуклеиновых кислот». Однако до сих пор общепризнанного определения понятия «жизнь» не существует. Тем не менее можно выделить признаки (свойства) живой материи, отличающие ее от неживой.

1. Определенный химический состав. Живые организмы состоят из тех же химических элементов, что и объекты неживой природы, однако соотношение этих элементов различно. Макроэлементами жи­вых существ являются углерод (С), кислород (О), азот (N) и водород (Н) (в сумме около 98% состава живых организмов), а также кальций (Са), калий (К), магний (Мg), фосфор (Р), сера (S), натрий (Nа), хлор (Сl), железо (Fе) (в сумме около 1–2%). Химические элементы, кото­рые входят в состав живых организмов и при этом выполняют биоло­гические функции, называются биогенными. Даже те из них, которые содержатся в клетках в ничтожно малых количествах: марганец (Mn), кобальт (Со), цинк (Zn), медь (Сu), бор (В), иод (I), фтор (F) и др. – и их суммарное содержание в живом веществе составляет около 0,1%, ничем не могут быть заменены и совершенно необходимы для жизни

Химические элементы входят в состав клеток в виде ионов и молекул неорганических и органических веществ. Важнейшие неорганические вещества в клетке – вода (75–85% сырой массы живых организмов) и минеральные соли (1–1,5%), важнейшие органические вещества – углеводы (0,2–2,0%), липиды (1–5%), белки (10–15%) и нуклеино­вые кислоты (1–2%).

2. Клеточное строение. Все живые организмы, кроме вирусов, имеют клеточное строение.

3. Обмен веществ (метаболизм) и энергозависимость. Живые организмы являются открытыми системами, они зависят от поступления в них из внешней среды веществ и энергии. Живые существа способны использовать два вида энергии – световую и химическую, и поэтому признаку делятся на две группы: фототрофы (организмы, использующие для биосинтеза световую энергию – растения, цианобактерии) и хемотрофы (организмы, использующие для биосинтеза энергию химических реакций окисления неорганических соединений – нитрифицирующие бактерии, железобактерии, серобактерии и др.). В зависимости от источников углерода живые организмы делят на автотрофы (организмы, способные создавать органические вещества из неорганических – растения, цианобактерии), гетеротрофы (организмы, использующие в качестве источника углерода органические соединения – животные, грибы и большинство бактерий) и миксотрофы (организмы, которые могут как синтезировать органические вещества из неорганических, так и питаться готовыми органическими оединениями (насекомоядные растения, представители отдела эвгленовых водорослей и др.).



Пищевые вещества, попавшие в организм, вовлекаются в процессы метаболизма – обмена веществ. Выделяют две составные части мета­болизма – катаболизм и анаболизм.

Катаболизмом (энергетический обмен, диссимиляция) называется совокупность реакций, приводящих к образованию простых веществ из более сложных (гидролиз полимеров до мономеров и расщепление последних до низкомолекулярных соединений углекислого газа, воды, аммиака и др. веществ). Катаболические реакции идут обычно с высво­бождением энергии. Энергия, высвобождающаяся при распаде орга­нических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме – аденозин-трифосфата (АТФ). Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования, т.е. присоединения неорганического фосфата к АДФ. Катаболизм делится на несколько этапов

1. Подготовительный этап заключается в расщеплении сложных углеводов до простых: глюкозы, жиров до жирных кислот и глицерина, белков — до аминокислот.

Загрузка...

2. Бескислородный этап дыхания – гликолиз, в результате которо­го глюкоза расщепляется до пировиноградной кислоты (ПВК); в ито­ге образуется АТФ (из 1 моль глюкозы). У анаэробов или у аэробов при недостатке кислорода протекает брожение.

3. Кислородный этап – дыхание, т.е. полное окисление ПВК осуществляется в митохондриях эукариот в присутствии кислорода и включает две стадии: цепь последовательных реакций — цикл Кребса (цикл трикарбоновых кислот) и цикл переноса электронов; в итоге образуется 36 АТФ (из 1 моль глюкозы).

Анаболизм (пластический обмен, ассимиляция) – понятие, противоположное катаболизму: совокупность реакций синтеза сложных веществ из более простых (образование углеводов из углекислого газа и воды в процессе фотосинтеза, реакции матричного синтеза). Для протекания анаболических реакций требуются затраты энергии. Наиболее важным метаболическим процессом пластического обмена является фотосинтез (фотоавтотрофия) – синтез органических соединений из неорганических за счет энергии света.

4. Саморегуляция (гомеостаз). Живые организмы обладают способностью поддерживать гомеостаз – постоянство своего химического состава и интенсивность обменных процессов.

5. Раздражимость. Живые организмы проявляют раздражимость, т.е. способность отвечать на определенные внешние воздействия специфическими реакциями. Реакция многоклеточных животных на раздражение осуществлявляется с участием нервной системы – рефлекс. Реакция на раздражение у простейших животных называется таксис, который выражается в изменении характера и направления движения. По отношению к раздражителю выделяют фототаксис – движение под воздействием источника света, хемотаксис – перемещение организма в зависимости от концентрации химических веществ и др. Различают положительный или отрицательный таксис в зависимости от того, как действует раздражитель на организм: позитивноили негативно. Реакция на раздражение у растений – тропиз выражается в определенном характере роста. Так, гелиотропизм означает рост наземных частей растений (стебля, листьев) по направлению к Солнцу, а геотропизм – рост подземных частей (корней) по направлению к центру Земли.

6. Наследственность. Живые организмы способны передавать неизменными признаки и свойства из поколения в поколение с помощью носителей информации – молекул ДНК и РНК.

7. Изменчивость. Живые организмы способны приобретать новые признаки и свойства. Изменчивость создает разнообразный исходный материал для естественного отбора, т.е. отбора наиболее приспособленных особей к конкретным условиям существования в природных условиях, что в свою очередь приводит к появлению новых форм жизни и новых видов организмов.

8. Самовоспроизведение (размножение). Живые организмы способны размножаться – воспроизводить себе подобных. Благодаря размножению осуществляются смена и преемственность поколений.

9. Принято различать два основных типа размножения: бесполое и половое.

10.Индивидуальное развитие (онтогенез). Каждой особи свойствен онтогенез – индивидуальное развитие организма от зарождения до конца жизни (смерти или нового деления). Развитие сопровождается ростом.

11.Эволюционное развитие (филогенез). Живой материи в целом свойствен филогенез – историческое развитие жизни на Земле с момента ее появления до настоящего времени.

12.Адаптации. Живые организмы способны адаптироваться, т.е. приспосабливаться к условиям окружающей среды.

13.Ритмичность. Живые организмы проявляют ритмичность жизнедеятельности (суточную, сезонную и др.).

14.Целостность и дискретность. С одной стороны, вся живая материя целостна, определенным образом организована и подчиняется общим законам; с другой — любая биологическая система состоит из обособленных, хотя и взаимосвязанных элементов. Любой организм или иная биологическая система (вид, биоценоз и др.) состоит из отдельных изолированных, т.е. обособленных или отграниченных в пространстве, но тесно связанных и взаимодействующих между собой, частей, образующих структурно-функциональное единство.

15.Иерархичность. Начиная с биополимеров (белков и нуклеиновых кислот) и заканчивая биосферой в целом, все живое находится в определенной соподчиненности. Функционирование биологических систем на менее сложном уровне делает возможным существование более сложного уровня.

16.Негэнтропия. Согласно второму закону термодинамики, все процессы, самопроизвольно протекающие в изолированных системах, развиваются в направлении понижения упорядоченности, т.е. возрастания энтропии. В то же время по мере роста и развития живые организмы, наоборот, усложняются, что, что не противоречит второму закону термодинамики, поскольку живые организмы представляют собой открытые системы. Организмы питаются, поглощая при этом энергию извне, выделяют в окружающую среду тепло и продукты жизнедеятельности, наконец, погибают и разлагаются. По образному выражению Э. Шредингера, «организм питается отрицательной энтропией». Совершенствуясь и усложняясь, организмы вносят хаос в окружающий их мир.


Дата добавления: 2015-11-26; просмотров: 65 | Нарушение авторских прав



mybiblioteka.su - 2015-2018 год. (0.008 сек.)