|
4IH4J4JePeHLWaJThHMM H3MBTC5I
ypaBHeHlle, CB5I3EIBIOW H3BHCHM}O HepeMeHHyIo, HH3BCTH}O JYHKUH}O H eeHOH3BOHbI
ypaBHeHHe, co.Lep)Kawee HpOH3BOLHy1O He3aBHCHMOH HepeMeHHoH
ypaBHeHHe, KOTOO JIFKO
ypaBHeHHe, KOTOO pemaeci.Lw1Jc1epeHuHpoBaHHeM
PeTJIHTh Hc1x1epeHuHaJmHoe ypaene — 3T0 oaae wc1x1epeHuHpoBaHHe BHHH5J
HaxoKeHHe H3BHCHMO11 HepeMeHHoH
HpOH3BO,LHOH c1yHKuHH
4IH4xjepeHuHaJmHoe H3MBTC5J.TIHHeHHMM, ecJrn
HH3BCTH51 y B HBO11 CTHHH
Bce HOH3BOHM HeH3BeCTHOH c1YHKUHH B HepBOH CTHHHOHO J1HHF1HO OTHOCHTJThHO y H ee HOH3BOHMX
pemee 3IIHCMBTC5I B BHLe 5JBHOH YHKUHH
O6MKHOBeHHMM LH434epeHuHaJmHbIM H3MBTC5J KOTOO HOCTO
KOTOO CO.Lep)KHT TOJThKO H3BHCHMIO nepeeyio H HH3BCTH}O YHKUHIOB KOTOOM HH3BCTH5{ 4YHKuH5I 3BHCHT OT BX HMHHMX
B KOTOOM HH3BCTH5{ 4YHKuH5I 3BHCHT OT OLHOH nepeMeHHoH
4HCILO HOCTO5{HHMX B O6WeM HJHHH w1xepeHuHaJmHoro BHHH5I oHpe,LeJI5IeTc5{
HO5IKOM LHc1xePeHuHaJmHOrO BHHH51 cTapmell CTHHMO HeH3BeCTHOH 4YHKUHH
BHOM ilpaBoll qCTH
cTapmell CTHHMO He3aBHCHMOH HepeMeHHoH
4aCTHMM pemee Hc1Jc1JePeHuHaJmHOrO BHHH5I llepBoro HOp5ILKa H3MBTC5Ipemee HH y = x
pemeHHe, oiiyaioweeci 113 o6iuer’o pemeHu HH oHpe,TeJ1eHHoM 3HHHH HOCTO5fflHOFI
C
pemee HH y =
pemee B BHLe CTHOFO BX 4YHKL1HH
4IHc1Jc1JePeHuHaJmHMM HepBoro HO5LTK H3MBTC5IypaBHeHHe, B KOTOOM H3BHCHM5I llepeMeHHa5{ X B HepBOH CTHHHypaBHeHHe, B KOTOOM HH3BCTH51 4YHKL1H5{)’ B HepBOH CTHHH
ypaBHeHHe, KOTOO CO,Tep)KHT HpOH3BO,THyIO HeH3BecTHOH 4YHKL1HH TOJThKO HepBoro HO5IK
HBO1kI CTHH1kI
4IM4J4JePeHLWaJThHOe ypaene H3MBTC5J JTHHeHHMM ypaBHeHHeM HepBOFO nopn4Ka, eCJTHOHO.LIHHeHHO OTHOCHTJThHO X My
OHO.LIMHeMHO OTHOCMTJThHO X My’
— CBO4MTC51 K yBHHMflM C Pa34CJ11OWHMHCn HCCMCHHMMH OHO.TIMHCMHO OTHOCMTCJThHO y My’
eyHKuMSlf(x, y) SIBIISICTCSI O,RHOpO4HOM 4YHKUMCM CBOMX FMCHTOB k-ro nop5rnKa, ecTifi
f(tx,) = tkf(x,y)
y =?
y=kx
Cpe,LH.LHc1xepeHuHaJmHbIx ypaBHeHHH:
a) 2y’—xy2 = e_X; 6) y’+5xy = sin2x; B)yy’—y = e2X;)y’+=tgx
y
.TIHHeI1HMMFI w14x1epeHuHaJmHbIMH BHHH5IMH neporo nop5ILKa 5JBJ]5110TC51 BHHH5IB)
6)
B,F)
a,B)
YpaBHeHHe y’=f(x, y) HThIBTC5I oHopoHMM, ecii
f(x,y)= 0
cj?yHKuwIf(x, y) 5{BJ15{TC5J OLHOpOLHOH 4YHKUHeH CBOHX FMHTOB HJTBOFO nopIwca Bce B IIepBOH CTHHH
cl?yHKUWI f(x, y) 5{BJ15{TC5J OLHOpOLHOH 4YHKUHeH CBOHX FMHTOB HepBoro nop5I,TKa
113 wffj)cjepeHuHaJmHbIx ypaBHeHHH:
a)y’ +y =x; 6) y’—2y = cosx; B) y’+= sin2x r) y’—xy=e
y
He 5{BJ15ITC5J I[HHeHHbIM LH4xepeHuHaJmHMM eporo Hop5ILKa TO.JTbKO ypaee
a)
6)
B)
R)
113 H4J4JepeHuHaJmHMX ypaBHeHHH:
a)(y) —y=x 2 ;6)y
7
+xy=e;B
) xy —y 3 =sinx;r)y +xy=e
5{BJ15{TC5{ I[HHeHHJ,IM HepBoro Hop5{LKa
a)
6)
B)
113 HHMX LH4xepeHLu1aJThHbIx ypaBHeHnFT:
a) y’+3xy=cosx;6)xy’—y=x2y;B) y’—2xy=sin2x;r) 2xy’—y=xy2
51BI151TC51 l3epHyIEIIH ypaee
HOp51OK.L114x1epeHuHaJmHoro BHH115I
11Op51.LKOM HaliBbIcifiell HpoH3Bo,LHoH, BXOL51WeH BHoKa3aTeIleM CTeIIeHH H3B11C11MO11 HMHHOF1HOKa3aTe.TleM CTIIHH HeFI3BeCTHOH cIYHKUHH
HOp51.LKOM padlloJlodceHwI 11pOH3BO,LHOH
PemeHHeM,Lw1x1epeHuHaJmHoro BHHH5J y’ = f(x, y) H3MBTC51
— rno6a5l 4yHKuH5I
4yHKu1151 y = q(x), KOTO51 upil HOCTHOBK B 3T0 O6paWaeT ero B TO)KLeCTBO
— rno6a5l w14x1epeHuHpyeMa5I 4yHKuwI
— rno6a5l HHTerpFlpyeMa5I 4YHKUH5I
B JmHeiiHOM BHHHF1 y’ + p(x)y = q(x) IYHKUHH p(x), q(x) 5IBII5IIOTC5I
TOJThKO BO3PCT10WHMH HF13BCTHMM11 cI2YHKUH5JMH
F13BCTHMM11 cI?YHKUH5JMII He3aBHCHMOH nepeMeHHoH Xowia 113 4)yHKUIW H3BecTHa5I, Lpyra5{ HH3BCTH51
O6ee pemee Lw14ePeHuHaJmHOrO BHHH51 y” = f(x,y,y’) coepnrrOH HOH3BOJThH1O HOCTO51HH1O
emipe HOH3BOJThHM HOCTO51HHM
T11 HOH3BOJThHM HOCTO51HHM Be HO113BOJThHM HOCTO51HHM
113 wlcl)cl)epeHuHaJmHbIx ypaBHeHHl:
a) y y’ + 2x = e2X; 6) y” + — = sin 2x; B) y’ + 3xy2 = cos x; r) y’ — = xeX
I1HH11HMM 51BJ151TC51
CpeH 2w4J4epeHuHaJmHMx ypaBHeHHH:
a) y’+2xy2 =eX; 6)y2y’—2y = sinx; B)y’—cosx; r)y’+3xy = e2X
y
IIHHeHHMMH M4xfepeHuMaJThHMMH BHHFI5IMFI iieporo nop5ILKa 5JBJI5JIOTCSJ BHHFI5I
a,B)
—6,B)
a)
r)
Ho.Lw1x1epeHuMaJmHoro BHHI45I HOHHMTC5I HaxoKeHMe FlHTerpa.rla OT llpaBoI4 qaCTil BHCHH5I
pemee,Lw1x1epeHunaJmHoro BHCHH5IHaxoKeHMe FiRTerpaJia OT (j)YHKUIIII yHaxoKeHMe FiRTerpaJia OT nepeMeHHon X
Cpe,LM wffl4epeHunaJmHbIx ypaBHeHnH:
a)xy’ + 3y = 2x2 6)yy’ — 2x = e3X; B)y’ — = xsin x; r)y’ + 3xy3 = tgx
IH4HF1HMM 51BJ151TC5J ypaee
a)
—6)
B)
r)
O6wee pemee BHHH5I y’ — y = 0 HMT BH
1
x+C
—y=Cx
—y=e x+c
Cx
Ecilil y(O) = 1, TO ‘-IaCTHOC pemee BHCHH5I y’ + y = y = eX_l | 0 HMCT BH | ||
y = e_X | |||
—y=e x+1 —y=e 2x | |||
YpaBReRMe l3epHyJU[H HMCCT | BHL |
= f(x,y)
y’+p(x)y=q(x)
+ a1y’ + a2y = f(x)y’+p(x)y=q(x)y
YpaBReHile l3epHyJl.T1H 5{BJI5{CTC5I JIHHCHHMM BHCHHCM llpFI
—n=2
n=O
O6ee pemel-me BHHFT5I xy’ — in X =0 nee BII
y=ln2x+C
y=(2inx—1)+C
in2 x +c
y=ln(Cx)
YpaBReHile y’ + p(x)y = q(x)y’1 H3MBTC5J
IH4HF1HMM
I1F1HF1HMM eporo nopiwca fl-FO HOP5LTK
13epnyuin
4IwjcjepeHuHaJmHoe ypaee y’ + p(x)y = q(x) HamiBaeTci
13epnyuin
OHOOHbIM
.LWIHeHHMM eporo nopiwca
C P3CJ15IIOWHMHC5{ HMHHMMH
O6wee pemee BHCHH5{ l3epHyJiTIH y’ + p(x)y = q(x)y’1 coeprn
n HOF13BOJThHMX HOCTO5{HHMX Be HOH3BOJThHM HOCTO5IHHMC
6ecKoHeHoe ‘-IFICJIO HOH3BOJThHMX HOCTO5{HHMX
OH HOH3BOJThHIO HOCTO5IHHIO
HOp5IKOM wff1Jc1JepeHuHaJmHoro BHCHH51 H3MBTC5I capmai cenen HCH3BCCTHOH 4YHKUHH
HOp5I,LOK HaHBMCIIIeH npow3BoLHoH, BXOL5{weH B BHCHHC
capma cenen HC3aBHCHMOH nepeeno x HO5IOK HailMenbifiell npow3BoLHoH, BXOWIWeH B
Haamnoe yciornie Lw134epeHuHaJmHoro BHCHH51 y’ = f(x, y)6yeT 3aaHo, CCYIH BBHHHF1
H3BCTHO OHO 113 peuien H3BCTHO o6ee pemee
H3BCTHO aene 4YHKuHH y npn x =
npaa acm HOCTO5{HH
HaaJmHoe yciioBlle y(x) = B,LwjxjepeHUMaJmHOM BHHH11 y’ = f(x,y) 3a,LaeTc5I ,LII[5I
opeeiiewi o6ero pemeHi
Дата добавления: 2015-10-30; просмотров: 131 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
TEMA 10. MIICJIOBbIe pnJbI | | | CTHOFO peffleHFl5J |