|
K1— K2
YriioM)BM5I H5IMMMH H3MBTC5J
MeHbIIII1H f OIL, H KOTOphIM Ha,Lo HOBHTh o6e H5JMM Lo ux coBnaLeHu5I C oci3io Ox
— MeHbfflMuI yrOIL,H KOTOphIM Ha,Lo HOBCHTb OH H5JMIO O ee coBnaLeHu5I C FOH
H51MOF1
— MHMJIHF1 yroJi, Ha KOTObIH Ha,Lo HOBCHTh o6e H5IMM O fix COBnaLeHH51 C OCMO 0))
— 3HOCTb yrILOB, O6pa3OBaHHbIX 3THMH H5JMMMH
YpaBliefille Hp5lMoFl, ilpoxowiwen epe HHIO TOK B HHOM HaHpaBJTeHHH, HMT BH
(x2 — x1)(— = (2 —1)(x — x1)
ab
—y —yo=Ko(x — xo)
B BHHH11 H5IMbIX C L1HTPOM B TOK A yrJIOBOH KO3c1xHuHeHT K —
cl?I1KCI1p0BaHHMH
6ecKoHeHbIii
HpOFI3BOJmHbIH
cera pae 0
YpaBliefifle H5IMMX C UHTPOM B TOT-lKe M0 (x0 HMT BH
—+=1
ab
Ax+By+C=O
ly—yo=K(x—xo)
YpaBliefifle Hp5IMoH B OT3KX HMT BHL
ab Ax+By+C=0
—y —yo=Ko(x — xo)
O6wee ypaee Hp5IMOH HMT BH,T
Ax+By+C=0
ab
—y —yo=Ko(x — xo)
YpaBReHile Hp5lMoH, llpoxo5JweIi epe TOKH A(—2;3) Fi B(4;—3), ilMeeT BH,L
y=—x—5 y=—x+1 y=—2x+1
PaccTo5lHMe OT TOK1kI O H51MOFI ollpe,LeJ15IeTc5I c1OPMYJIOH
d=(x2 —x1)2 +(y2 —y1)2
d= Ax0 +By0 +C
A2 +B2
d_0 +By0 +C
-
A2+B2
d= °_+By0 +C
A2 +B2
YrI1oBoii KO34x1HLweHT H51MOF1 Ax+By+C=O ripi B O pae
A B
A
B
TaHFeHC yriia HKJIOH np5IMOcI + = 1 K OCH Ox pae
ab
b
a
a
b b
a
YpaBHeHMe Hp5IMoH, poxownue epe TOK A(1;2) apauiemo Hp5IMOH x + y —1 = 0,
HMT BH
y=—x+3 y=—x—5
y=—x—3
YpaBHeHHe IIpnMoM, HpoxowIwen epe TOK A(—1;2) HePHeH.IWKYJmPHO H5IMOF1
y = 2x +3, ilMeeT BII,R
y=——x—3
1 3
2 2
1 2
y=——x+—
2 3
1 3
2 2
B Tpeyl-OJThHIkIKe C BepfflHHMH B TO’ucaX A(—1;1), B(1;2), C(3;—2) ypaBHeHue MC4I$HM AM
HMCCT BH4
x2
x3
y =——+—
x
x2
B TFOJThHF1K C BCpHIHHaMH B TOKX A(—1;1), B(1;2), C(3;1) ypaee Hp5IMOH AC
MMT BII,T
y=x
y=1
x=1
y=x+1
Hp5IMa5
xy
—+-—=1,re
ab
a O Fi b O
apauiema oci Ox
apauiema OCFi Oy
epeceae oc Ox B TOKC (a;O) epeceae OCh Oy B TOKC (a;O)
YpaBReRMe Hp5IMoH, poxownue epe TOK A(2;3) Fi o6pa3yloweii c HOY1O)KHTJThHMM
oci Ox yroi 450, HMT BHL
y=x
y=x+5 y=x—2 y=x+1
YpaBHeHHe Hp5lMoFl, HpoxoJweIl epe TOK B(4;1) Fi o6pa3yIowei c HOY1O)KHTJThHMM
HaHpaB.TIeHI4eM oci yroi 1350, MMT BML
x+y—5=O x—y—3=O x+y—3=O
— —x+y—5=O
K H51MOF1 y = —4x + 1 H5JM5I
— y=——x+2
— y=—x+2
y=4x+2
— y=—4x+3
Yro.ri Meicy H5{MMMH 2x + 3y —4 = 0 Fi 3x — 2y +1 = 0 paeii 00
YpaBReRMe Hp5IMoM, poxoiwe epe TOKH A(x1,y1) Fi B(x,,y2), HMT BHL
y—y1
=
x—x1
Y2 Yi X2 —X1
Y2 +1
X2 +X1
=
YYi X—X1
y—y1
=
x—x1
X2 —X1 Y2 Yi
YY2 XX2
Y2 Yi X2 —X1
PaccTwrnlle OT TOKH A(2;—1) o Hp5JMOH 4x — 3y +9 = 0 BHO
—2,8
—4
—14
—7
113 H51MMX
a)x—5y—3=O; 6)5x—y+4=O; B)5x+y—3=O; r)x+5y+3=O Hapaiii1eIIbHokK
Hp5IMOFI y = 5x —3 6y,LeT
a)
B)
r)
6)
113 H51MbIX
a)2x+y—3=O; 6)x+2y—3=O; B)2x—y+5=O; r)x—2y+3=O
HepHeHW1KyI151pHOM K Hp5JMOH y = —2x +3 6y,LeT
a)
—6)
r)
B)
TOTIKaMF1 epeceewi Hp5JMOH 3x — —12 = 0 C OC5IMH KOOpLHHaT Ox H Oy 5IBJI5IIOTC5I
COOTBTCTBHHO TO’-IKH
A(4;0) Fi B(0;—3)
A(0;—3) Fi B(4;0)
— A(—4;3) Fi B(3;—4)
A(—4;0) Fi B(0;3)
YpaBHeHHe Hp5IMoFl, poxowiwe | epe TOKH A(2;3) Fi B(2;—1), HMCCT BH,L | |
—y=2x | ||
—y=2 | ||
—x=2 —y=x—2 |
YpaBHeHHe Hp5IMoH, poxownue epe TOKH A(3;—1) Fi B(— 2;—1), HMCCT BHL
y=3x—2
Ecilil x2 = x1, TO BHCHHC Hp5IMoH, poxoiwe i epe T01IKH A(x1 y1) Fi B(x2 HMCCTBH
y—y1
=
x—x1
Y2Y1 x2—x1
x = x1
y = x1
y = k(x — x1)
Ecirn y2 = y1, TO Hp5IMon, npoxo,L5Ime I iepe3 TOKH A(x1 y1) Fi B(x,,; ilMeeTBH
y—y1 x—x1
Y2Y1 x2—x1
y=y1
y—y1 =x—x1
x = x1
4 3
Hp5lMMe y=—x+1 ii y—x—2
—
—
o6pa3yloT fOI1 B 450
o6pa3yloT yFOJI, BHbW arctg
To’-wa M pa36HBaeT OT3OK AR, re A(1;2), B(4;5), TaK, T-ITO AM = 2 MB. KoopHHamI TO’-IKFI M BHM
(3;4)
(2;3)
(2;4)
(2,5;3,5)
PaccTo5lHMe OT TOKF1 M(3;4) o H5{MO y = 2x —1 BHO
1
YrI1oBoii KO3c1Jc1JHLWeHT Hp5IMOH 2x — —6 = 0 paeii 3
—3
Yroi HKI1OH Hp5IMoH 3x + 4y —1 = 0 K HOI1O)KHTJThHOM HHBJIHHIO OCH Ox pae
—arctgj
3
—arctg—
arctgj
3
arctg—
B TFOJThHF1K C BCpTJIHHaMH A(— 3;—2), B(2;3), C(4;—1) ypaee CTOOHM BC HMCCTBM
y=—2x+7
1 7
YjX+j
y=x+5
y = 4x—3
B TFOJThHF1KC C BCpHJHHaMH A(— 3;—2), B(2;3), C(4;—1) I1HH Me,LnaHbI AM paa
EcilM A(— 2;3), B(6;—3), TO TOK C, eiiua OTC3OK AR B OTHOTJICHHH KOOIIHTbI
(-3;3)
(-6;6)
AC
= —, HMCCT
CB
YpaBHeHMe Hp5IMoH, poxownue epe TOKH A(— 2;3) iT B(2;—1), HMCCT BHL
x—y+1=O x+y—3 = 0x+y—1=0 x—y—1=0
B TCFOJThHHKC C BCfflHHMH A(— 3;—2), B(2;3), C(4;—1) ypaieie BMCOThI CD HMCCT BH
x+y—3=0
x+y+3=O x+y+5=O x+y—5=O
B TFOJThHF1K C BfflHHMH B TOKX A(2;3), B(— 3;—2), C(4;—1))I1MH BMCOTM AD
Paa
7q1
5
TEMA 2. flpee.JibI II YHK1WI4
Ecilil lima(x) =0, TO YHKU1151 cL(x) H3hIBTC5I
x—*3
— 6ecKoHeHo 6ommoIi yHKu11en B TOK
x3
— 6ecKoHeHo Ma.nOFl c1yHKLwe11 B TOK x = 3
— HOCTO5IHHOH B TOT-W x = 3
y6blBaloweui 4yHKu11eH B OKCTHOCT11 x = 3
EcliM 6ecKoHeHa51 11CJ1OB5J nOCI1e,LOBaTeJmHOCTb {a } 11MT 11pe,LeI1 a, TO 8 — OKCTHOCTbTOKH a COepK11T
6ecKoHeHoe ‘-IMCJIO q.neHOB 11OCI1OBTJThHOCT11
KOHeT-IHOe TI11CJ1O q.TIeHOB 11OC.neLOBaTeJmHOCT11 6ecKoHeHo aioe T-IMCJIO T-UIeHOB 11OCJIe,LOBaTeJmHOCT11 OBHO fl q.TIeHOB
2x2—x—3
Hpeeii urn pae
x-*-13x +2x—1
5
5
5
4
5
KaKoe 113 yTBep)KLeH11H BepHO?
Ec.nM 11OCI1OBTJThHOCTb HMT Hpe,LeI1, TO OH MOHOTOHH
Ecjw 11OCI1OBTJThHOCTb M0H0T0HHa, TO OH CXO11TC5I
Ec.nM 11OCI1OBTJThHOCTb MOHOTOHH 11 orpaHHeHa, TO OH HMT npeeii
EcliM 11OCI1)OBTJThHOCTb CXO,LI11TC5{, TO OH 3HKOHOCTO51HH
BbIpaeHHe cc — ciD
BHO 0
—paBHO
BHO
|
ECJIH uirn f(x) TO c1JYHKUH5{ f(x) H3MBTC5I
—*
6ecKoHeHo Malloll BeIlHqHHOH B TOK x =
6ecKoHeHo 6omuioii BeJIHqHHOH B TOK X =
HHMBHO11 B TOK X =
KOHCTaHTOH
Hpeeii Llfllsa pae
a—>O a
—cc
—1
Hpeeii HOCTO5IHHOii C 0 pae
— CMO11 HOCTO5IHHOFI pyrOH HOCTO5JHHOFI
Hpeeii HpOF13Be.LeHw1,LByX 4yHKuHH pae
cyMMe Hpe,LeJIoB 3THX 4)YHKUHH
3HOCTF1 peeiio 3THX cyHKunHHOM3BHMIO peeio 3THX 4yHKuHHOTHOII1HF1IO peeio 3TFIX 4yHKuHH
41115{ CYWCTBOBHH5I npeLeJ1a YHKUHH f(x) B TO’-we X0, BHOFO ‘-iciiy a 0, Heo6xoLHMo
Fi,LocTaToqHo, To6M B HKOTOOF1 OKCTHOCTH TO’-IKFI X0 ilpil yciloBilil, TO a(x) —
6ecKoHeHo MaJIa5{ c1yHKUH5{ B TOK X0
f(x)=a(x)
f(x)=a+a(x)
f(x)=a.a(x)
a
a(x)
Hpeeii
( i
+ pae
l1fl1I1
8— OKCTHOCTMO TOKH a H3MBTC HHTepBan I1HHOH 8 C UHTPOM B TOK aHHTepBan I[HHOH 26 C UHTPOM B TOK aHHTCBfl I[HHOH 26, coep)KawHH TOK 0HHTepBan J1HHOH 6 C UHTPOM B HJ1
Ecim 6ecKoHeHa qMcI1oBa HOCIIe,OBaTeJThHOCTh {an } MMT Hpe,eJ1 a, TO BH 8 —
OKCTHOCTH TOKH a COKMTC5J
KOHHO qilCilO ee qileHOB
— 6ecKoHeHoe ‘IHCIIO ee T-LTIeHOB
— 4HIKCF1pOBaHHOe tWCIlO qIleHOBOBHO fl T-LTIeHOB
2x2—7x+3
Hpeeii Tim pae
3x —lOx+3
5
5
5
1’
Hpeeii 1im 1— — pae
n)
5
e3 e15
5
Ec.nH q.neHbl HocI1e)oBaTeJmHocTeH {an }, {bn }, {cn } ripFi mo6Mx n e N OBI1CTBO5IIOT
|
fl—>D fl—>D
Imb
n—*cID
limb,1
n—*cf
Limb,1
n—*cIJ
limb,1 <a
Eclill urn a, = a, urn b, = b Fi I15J rno6Mx n N BMHOJ1H5ITC5I HBHCTBO a, b,, TO
fl-* fl-*
ab a<b a b
a b
(i’ Hpeeii Timl+jJ PBH
5
5
e3
e5
|
Hpeeii -, pae
x-°° 3x +x—2
—3x2+x—2
Hpeeii Tim pae
x-> 4x —1 lx +3
—0
3x2—5x+7
Hpeeii Tim pae
x-*c4x +2x—5
—c/D
5
5
sin3x
Hpeeii 1111 pae
—3
—0
sin x
Hpeeii lim 2 pae
x—*O x
—0
/
Hpeeii Tim(1+ I pae
X->D\
e3 e3
x
I
Hpe,reii urnt I pae
X*QC\ 2xJ
e3
e4
3X 4
Hpeeii Tim pae
4X +5
x_*oo
—0
5
—3x+2
Hpeeii Tim pae
x- 2x+3
2
Ecrni HH x x0 YHKUH a(x)— 6ecKoHeHo MaJ1a BJlHHH, TO
paa 6ecKoHeHocm 6ecKoHeHo 6oJmma5I ernina
— HOCTO51HH51 Be.nwrnHa
BJ1FIHH
a(x)
Ecrn HH x x0 YHKUH f(x) — 6eCKOHeHO 6obma BernlqnHa, TO
paa HJT[O
HOCTO51HH51 Be.rlwrnHa 6eCKOHeHO MJ15I BJ1HHH
BeJlw-lHHa
f(x)
Ec.nH B OKCTHOCTH TO’-IKH X0 HKOTOIO c1yHKuHIo f(x) MO)KHO IIpe,LCTaBHTb KK
f(x) = a + r,ie a— HOCTO51HHO IHCIIO, a(x) — 6ecKoHeHo MaJla5I BeJwqHHa upil x —*
TO 111T1 f(x) paieii
—a
a+a(x)
a huM a(x) B 3BHCHMOCTH OT OKCTHOCTH X0YKa3am Bblpa)KeHHe, KOTOO He 5IBJ151TC5{
(“0
()
YKa3am BMpa)KeHHe, KOTOO He 5IBJ15ITC5I
(“0
jim x2
pae
x—*3—O x2 —9
—-D
jim x2
pae
x—*3+0x2 9
—-cc
—0
—1
jim
3x
pae
x—*2—O 4 —
—-D
—0
—3
3x
Tim pae
x—>—2+O 4 —
—-D
—3
—0
lim(1 — 3x)x pae
x—*O
ECILH 6ecicoHeHo MaJTbI B TOqK X0 4JyHKUHH a(x) H f3(x) 3ICBHBaMeHTHM, TO urn
a (x)
—0
—1
cc
—A o,Ai
X—*Xo /3(x)
Ec.nH a(x) = e’ —1 Fi /3(x) = x —1 — 6ecKoHeHo amie B TOK x = 1 BeJIWIFIHbI, TO
CL(x) Fi [3(x) — 3KB14BJTHTHM
(1(x) — 6ecKoHeHo MJl5J BeJIIIqFIHa 6oiiee BMCOKOO Hop5JKa, ‘leM [3(x) (1(x) — 6ecKoHe’lHo MJl5J BJ1WIF1H 6oiiee HH3KOT’O Hop5JKa, ‘lM [3(x) (1(x) Fi [3(x) — 6ecKoHe’lHo amie BJ1WIHHM 3HMX HOp5JLKOB
EcilM a(x) = ln(1 + 4x) Fi /3(x) = 2x — 6ecKoHe’lHo amie BJ1W1I1HM B TO’lK x = 0, TO(1(x) Fi [3(x) — 3KBFIBaJIeHTHJil
CL(x) Fi [3(x) — 6ecKoHe’lHo aimie BJ1H’lHHM O,LHOFO HOp5JLKa
CL(x) — 6ecKoHe’lHo MJ15J BeJlw-IHHa 6oiee HI43KOFO Hop5JKa, qeM [3(x)(1(x) — 6ecKoHe’lHo MJ15J BeJlw-IHHa 6o.iiee BbICOKOFO Hop5JKa, qeM [3(x)
Ec.nM a(x) =1— cos3x Fi /3(x) = x3 — 6ecKoHe’lHo MJIM B TO’-lKe x = 0 BeIIHqFIHM, TO
(1(x) — 6ecKoHe’lHo Ma.iia5j BeJlw-lHHa 6o.iiee BbICOKOO Hop5JKa, qeM [3(x) (1(x) Fi [3(x) — 6ecKoHe’lHo amie BJ1W1HHM OLHOFO HOp5JLKa
(1(x) Fi [3(x) — 3KBMB3J1HTHM
(1(x) — 6ecKoHe’lHo MJI5J BeJIw-lHHa 6o.jiee HH3KOFO Hop5JKa, [3(x)
Ecrn a(x) = sin2 3x Fi /3(x) = 3x — 6ecKoHe’lHo amie B TO’-lKe x = 0 BeJIHqFlHbI, TO
(1(x) Fi [3(x) — 3KBF1BJ1HTHM
(1(x) — 6ecKoHe’lHo MJI5{ BeJIw-lHHa 6o.riee HH3KOFO Hop5{Ka, [3(x) (1(x)— 6ecKoHe’lHo MJI5I BJ1H’lHH 6oiiee BMCOKOO Hop5{Ka, ‘lM [3(x) CL(x) Fi [3(x) — 6ecKoHe’lHo amie BI[HqHHbI OLHOFO Hop5{LKa
EcJ1M CL(x) Fi [3(x) — 6ecKoHe’lHo amie B TO’lK x0 (1)yHKUHH 11
• a(x)
/3(x)
= 0, TO
(1(x) — 6ecKoHe’lHo aiia BI1H’lHH 6oiiee BbICOKOFO nopia, ‘lM [3(x)CL(x) Fi [3(x) — 3KBF1BJ1HTHM
CL(x) — 6ecKoHe’lHo aiia BejinqnHa 6oiiee HH3KOFO Hop5JKa, ‘lM [3(x)
cL(x) Fi [3(x) — 6ecKoHe’lHo amie BJ1H’lHHM OLHOFO Hop5JLKa
EcJ1M CL(x) Fi [3(x) — 6ecKoHe’lHo amie B TO’lK x0 (1)YHKUHH 11
• a(x)
/3(x)
= TO
a(x) — 6ecKoHe’lHo aiia BJIH’lHH 6oiiee BMCOKOFO opi,ijca, qe [3(x)ct(x) Fi [3(x) — 3KBHBJ1HTHM
ct(x) — 6ecKoHe’lHo aiia BeJIHqHHa 6ojiee HH3KOFO opi,ijca, qe [3(x)
a(x) Fi [3(x) — 6ecKoHe’lHo amie BJ1H’lHHM OLHOFO HOp5{,TKa
• a(x)
EcJ1H (1(x) Fl [3(x) — 6ecKoHe’lHo amie B TO’lK x0 (1)YHKUHH H /3(x) = A, re A 0,
A 1, TO
(1(x) Fl [3(x) — 3KBHBI1HTHM
(1(x) Fl [3(x) — 6ecKoHe’lHo amie BJ1H’lHHM O,THOFO HOp5{,TKa
cL(x) — 6ecKoHeHo Ma.r1a51 BJ1WffiH 6oiiee BMCOKOFO Hop5JKa, ieM [3(x)
cL(x) — 6ecKoHeHo Ma.r1a51 ernina 6o.jiee HW3KOT’O Hop5JKa, f3(x)
Ecirn a(x) = in sin x n /3(x) = 2x — — 6ecKoHeHo MJThI B TOT-we X — BeIlHqMHbI, TO
cL(x) n 13(x) — 3KBHBJ1HTHM
— cL(x) — 6ecKoHeHo MaJla5J erniqna 6oiee HH3KOFO HOp5JKa, ‘leM 13(x)
cL(x) n [3(x) — 6ecKone’lHo amie BeJIH’-IHHM O,LHOT’O Hop5JLKa
cL(x) — 6ecKoHe’lHo MaJla5J BeJIW-lHHa 6oiee BMCOKOO Hop5JKa, ‘-leM [3(x)
Hpeeii urn
1—cos22x
pae
x-*O 3x2
• sin3x
Hpeeii urn pae
xO x +4 —2
|
x-*1 x —3x+2
—0
——3
• 5n 2
Hpee 1im +3
X3_42
pae
xsin2x
Hpeeii urn pae
x-*O 1—cos2 x
Hpe,reii tim (‘/x2 + 2x — x) pae
x—÷+
HpeeM
• sin5x e4x_1
pae
5
4
5
4
e5X
Hpeen urn pae
x—*O 1—cos3x
5
5
—cc
TEMA 3. HenpepblBllocm yHKuHH. To’IKH 3bIB H CHMHTOTM ICllBbIX
YHKU115{ y =J(x) H3MBTC5J H11MBHOH B TOK X0, ecrni
oHa CyWeCTByeT B OKCTHOCTH TOKH X0 CYWCTBYT KOHHMH 11pe,LeII urn J(x)
x—>xo
— CYWCTBYT KOHeqHMH 11pe,LeJ1
urn J(x)=J(xo)
x—*xo
oHa CLUeCTBeT B TOK X0 11 B ee OKCTHOCT11
ToKa x0 iis c1yHKu1111f(x) 51BJ15JTC5J TOqKOH papia 1 -rOpo,La C KOHHMM cKaqKoM, eciTHXOT5I 6b1 O,L11H 113 O,LHOCTOpOHHHX npeLeY1oB urn J(x) iuii urn J(x) pae KOHeT-IHOMy
x_*xo_o x_*xo+o
qHc.Tly
KOHe’-IHJile OHOCTOOHH11 pe,eiii urn J(x) urn J(x)
x_*xo_o x_*xo+o
CYWCTBYIOT KOHe’-IHMe O,LHOCTOpOHHHe pe,eii urn J(x)H urn J(x)
x_*xo_o x_*xo+o
XOT5I 6M O11H 113 O,LHOCTOpOHH11X npeLeY1oB B TO’-we Xo 6ecKoHeeH
To’-wa x0 iii c1yHKuH11f(x) 51BJ15JTC5I TOT-IKOH papa 2-ro po,La, CJIH
XOT5I 6M OHH 113 OLHOCTOpOHH11X npeLe.r1oB urn J(x) H urn J(x) 6ecKoHeeH
x_*xo_o x_*xo+o
XOT5I 6M O,LHH 113 OLHOCTOpOHHHX Hpee.lloB urn J(x) H urn J(x) pae KOHeT-IHOMy
x_*xo_o x_*xo+o
HCJ1
KOHe’-IHJile OHOCTOOHHH peeiii urn J(x) = urn J(x)
x_*xo_o x_*xo+o
KOHe’-IHJile OHOCTOOHHH pe,eiii urn J(x) urn J(x)
x_*xo_o x_*xo+o
Fpa4rnK 4JyHKUHH y =J(x) HMT BTHKJThHIO CHMHTOT X = X0, CI1HCYLUCTBYT
LimJ(x)
TO’-wa X0 5{BJI5{eTC5{ yCTpaHHMOH TOqKOH papia viJ(x)
TO’-wa X0 5{BJI5{eTC5{ TO’-IKOH papia 2-ro poa (c 6ecKoHeHbIM cKaKoM) TO’-wa X0 5{BJ15{TC5{ TO’-IKOH papia 1 -ro poa (c KOHCHbIM cKaKoM)
ECIIH 4JYHKUH5I y = f(x) B TOK X = X0, TO
oHa opeeiiea B TOK
oHa MO)ICT 6Mm H oHpeeY1eHa B TOK
opeeiiea B3C B OKCTHOCTH TOKH X0, KOM caMoll TOKH X0
limf(x)=co
x—*xo
Ec.nH 4YHKUH5I f(x) Ha OT3K [a;b] H H KOHUX 3T0F0 OT3K HHHHMT 3HHH51 3HbIX 3HaK0B, TO
HaHeTc51 XOT5I 6M O)H ToqKa c e (a;b), B KOTOOH YHKUWI o6pamaeTc5l B 0
HH B OHOM TOqKe HHTBI1 (a;b) 4YHKUH51 f(x) He o6pamaeTc5l B 0
— BO BCM HHTBI1 (a;b) 4JYHKUH5I f(x) HOI1O)KHTJThH
— BO BCM HHTepBaJIe (a;b) 4JYHKUH5I f(x) OTPHUTJThH
EC.TIH c1)YHKUH5I f(x) Ha OT3K [a;b], TO OH
— MO)KT 6bIm Ha O)HOM 113 KOHUOB OT3K [a;b]
MO)KT 6bIm BHTH HHTBJ1 (a;b)
H CBepXy, 11 CH113
— orpaiea HuH cBepxy, 11.1111 CH113
HpHpaweHHe c1yHKuHH y = f(x) Ha OT3K [x0, x0 + Ax] HaXOLHTC5J HO 4)opMyue
f(x0 -Ax)-f(x0)
f(x0 +&)+f(x0)
f(x0 + Ax) - f(x0)
f(x0 -Ax)+f(x0)
YHKUH51 B TOK, eculil
6ecKoHeHo MI[OM HPHPWHHIO apryea COOTBTCTBT HO113BOJThHO nppaweecFYHKUHH
6ecKoHeHo MJIOM 1lpHpaWeHHIO 4YHKu11H COOTBTCTBT 6ecKoHeHo 6oimmoe
ppawee apryea
6eCKOHe’-IHO MJIOM HP11PWHHIO apryea COOTBTCTBT 6ecKoHeHo auioe pipawee 4JYHKUHH
6ecKoHeHo Ma.rlOMy HPHPWHHIO apryea COOTBTCTBT 411KCHpOBaHHOe
pipawee 4YHKUHH
IYHKUH5I B HHTepBaJIe, eculH oHaHa ero KOHUX
HMT KOHe’-IHOe ‘-IHCI[O TO’-IeK papia 1-rOpoa Ha 3TOM 11HTBJ1
HMT OH TO’-Wy papia 1-rOpoa B 3TOM 11HTBJ1
B Ka)K)OH ero TOqKe
To’-wa papa C KOHHMM CKKOM — 3T0 TO)K caMoe, TO
TO’-wa papia 2-ro poa
TO’-wa CTHHMOFO papia TO’-wa papia 1-ro poa
TO’-W, B KOTOpOH HpOH3BOLHa5I cJYHKUH11 KOHH
YruOBOii KO3c1J4JHUHCHT HaKuOHHOH CHMHTOTM HaXOLHTC5{ HO cjopMyuIe
kLjrnf(x)
x—*co
k=Li,E
kLim
x f(x)
f(x)
x—*O X
f(x)
kLim
X—*ci X
Y POF13OHTJThHOH CF1MHTOTM y = kx + b
— k O,b O
— k O,b=O
k=
k=O
Ec.TIH cj?yHKUWI f(x) B TO’-IKe Fi f(x0) 0, TO B 6ecKoHeHo MayloHOKCTHOCTH TOKH X0 c1yHKuH51 f(x)
o6paLuaeTc5I B 0
HMT TOT)K 3HaK, T-ITO Fi f(x0)
HMT HOH3BOJThHMF1 3HK
MH51T 3HK C
<<>> Ha
<<+>>
EC.TIH B TO’-we X0 CYWCTBYIOT He BHbI M)KLY CO6OH KOHHM.JTeBbIH H upaBbIll peemi cj?yHKUHH, TO
— TO’-wa papa 2-ro poa
— TO’-wa papia 1-P0poa
— CTHHM5{ TO’-wa papia
B TOT-we X0 HpOH3BOLHa5I 3TOH YHKUHH
ECIIH B TO’-we XOT5I 6M OLHH H3 OLHOCTOpOHHHX HpeLey1oB HKUHH 6ecKoHeqeH, TO
— TO’-IKa papia 1-P0poa
— CTHHM5{ TO’-wa papia
— TO’-wa papia 2-ro poa
B TO’-we He CYWCTBYT BTHKJThH5I CHMHTOT
x—3
IYHKUH5{ y = HMT BTHKJThHIO CHMHTOT
x —4x+3
x=1
x = 1,x = 3
x=3
y=1
YHKUH =
— 4x
HMT BCTHKMbHIO CHMHTOT
x=4
x = O,x = 4
x=O
y=x+2
Hycm Tim f(x) = —2, Tim f(x) = 2, ‘ror,ia CKa1OK 4YHKUHH f(x) B TO’-IKe X0 pae
x—*x0—O x—>x0+O
2x2+5x+6
4laHa 4YHKUMM y =. YTJIOBOH KO34X1MUHeHT HKJ1OHHOI1 CHM11TOThI pae
x—T
—cAD
—1
4IaHa cFYHKUHn y = 3x2 + 2x —5. YnroBoil KO34XFHUHeHT HaKIIOHHOfl CHM11TOThI pae
He CYWCTBYT
x2+2x—3
4IaHa 4YHKUHn y =. YpaBHeHHe HKJ1OHHOH CHMIITOThI uMeeT BH4
x
y=x—2 y=x+2
y=2
4aHa 4YHKUH5 =
X
x2 —4
YpaBHeHHe HaKHOHHOfl CHMHTOThI HMT BH
y=1 x=1
x=—2
x2+x e)THKUHS{ f(x) =
x —4x
x=O x=2
HMT CTHHMIO TOK B TOqK
He HMT CTHHMO11 TOKF1 papa
YpaBHeHHe HaK.TIOHHOiI CHMHTOTM LJ15J YHKUHH f(x) = ilMeeT BH,L
x +4
y=o
x2
y=x2 +4
2, ec.TIH x < —1;
411151 4JYHKUHH y= x2 +1,ecnH—1 x 1;
x +2, ec.TIH x> 1
— x = —1 — CTHHM5J TOK pa3pMBa; x = 1 — TOK papia 1-ro poa
— x = —1 — TOT-wa papa 1-ro poa; x = 1 — TOT-Wa papa 2-ro poa
— x = 1 — TOK papia 1-ropoa
TOK pa3plilBa HT
—x—3, ec.rIH x<—2;
21J151 c1yHKuHH y= 4—x2,ecnH—2 x 2;
x —2, ecn x> 2
x = —2 — TO’-Wa papa 2-ro poa; x = 2 — TO’-Wa papa 1-ro poa
x = —2 H X = 2 — CTHHMM TO’-IKH papia
x = 2 — TO’-wa papa 1-ro poa
x = —2 — TO’-wa papa 1-ro poLa
x+6, ec.riu x<—2; 4IJ15 4YHKUHH y= x2 —1,ec.riu—2 x<2;
—, ec.riu x 2
x
x = —2 — TO’-wa papia 1-ropoa
x = —2 — TO’-Wa papia 2-ro poa; x = 2 — TO’-Wa papia 1-ropoa
x = —2 H X = 2 — TOKH pa3plilBa 1-ropoLa TOqK papia HT
—x—5, ecii x —2;
JI5{ 4YHKUHH y= 1—x2,ecnH—2<x<2;
x -6, ecn x 2
x = —2 H X = 2 — TO’-IKH papia 1-ropo,Ta
x = 2 — TO’-wa papia 1-ropoa
x = —2 — TOK papia 1-ropoa; x = 2 — TOK papia 2-ro poa
x = —2 — TOK pa3pJ3IBa 1-ropoa; x = 2 — CTHHM5{ TOK papia
ecni x 1;
,111151 4YHKUMM 3) = 3x, ec.ri 1< x 3;
x +4, ecni x > 3
x = 1 — ycrpaiias ‘rornca pa3pMBa; x = 3 — ‘rornca papa 1-to poa
x = 1 — oqa papia 1-to poa; x = 3 — ‘rornca papa 2-to poa
—x = 1 FIX = 3 —ToqKH papia 1-to po,Ra
x = 3 — ToqKa papia 1-to poa
x2+2x—3
YpaBHeHHe HIUIOHHOFI CFIMHTOTM,LJTh 4YHKUMM y MMT BH,R
x+1
y=x+1 y=x+2 y=x—3 y=x+3
YpaBReRMe HIUIOHHOFI CFIMHTOThI 41J151 c1YHKUHH y
y=3—x
y = 2x +3 y=2—x
3) = —x
3+2x—x2 x
HMT BH,L
eyHKuFI5l
x+1
= 2
MMT BepTFIKaJmHyIO CHMHT0T
x = —1
x=3
‘ x —2x—3
x = —1, x =3
y=O
eyHKUIDI Y
x2 —4x
= 2
x —3x —4x
Дата добавления: 2015-10-30; просмотров: 124 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Christian Science Sentinel, February 2, 1918 | | | HMT YCTPHHMM T0KH 3bIB B TOKX |