|
—X =—1, x = 0
= —1, x = 4
x = —4, x = 1
x = 0, x = 4
eyHKLWfl =
x=O x=6 x=3
2x —6 x2—3x
HMT TOK papa 1-topoia B TOK
He HMT TOKH papa 1-to poa
YHKUH5{ 3) = HMT CTHHMM TOKF1 B TOKX
x —4x
x = —2, x = 2
x = —2, x = 0, x = 2
x=2
— He HMT CTHHMMX TOK papia
|
x —4
— He HMT
— x = —2, x = 2
— x = —3, x = —2, x = 2
2x —6
YHKUH5J y = B TO’-IKe x = 3 HMT
x +9
TO’-Wy papia 2-ro poaCTHHMIO TO’-wy papia He HMT TO’-IKH papia
HMT TO’-wy papa 1-ro poa
tYHKUH5{ y = HMT BepTHKaJThHMe CHMIITOTM (adilMuToTy)
x +x—6
x=2
x = —3, x =2
He HMT BepTHKaJThHMX CHMHTOT
2x2-i-3x—5
YpaBHeHHe HKJ1OHHOH CHMHTOTM,LI15{ 4YHKUHH y = HMT BHL
3—x
y = 2x —9
— y = —2x —9 y = —2x +9 y = —2x +3
TEMA 4. IHjHjepeHIUIaJIbHOe IIC’IIICJIeHIIe YHKUIIII OIHOII nepeeoit
Ec.LIH 4yHKUH5I y = f(x) B TO’-IKe MMT IIpOF13BO.LHyIO f’(x0), TO
f’(x0)=—
|
Ax—* 0
—f(x0)= 1im-—
Av-*0Y
—f(x)= 1im--—
Ax-+0
Ec.LIH HOH3BOH51 c1yHKLwH f(x) B TO’-W X0 paa Hyjilo, T. e. f’(x0) =0, TO KCTJThH5I K
rpacjllucy c1yHKuHH B 3T011 TOT-IKe
OCFi Oy
oci Ox
He CYLUCTBYT
o6pa3yeT oCTpbIH Yf OJI C HOJ1O)KHTJThHMM ocu Ox
Ec.LIH cl?yHKUH5I y = f(x) Hc1x1ePeHuHPYeMa B TO’-IKe X0, TO OH 3bIBH B 3T011 TO’-IKe
B TO’-IKe
BO3CTT
y6bIBaeT
HpOH3BOHa51 4JyHKUHH y = paa
3sinx—1
3COSX 1n3
3smxlfl3COSX
3slflxlnsinx
4IH4x1?epeHuHaI1OM c1YHKUHH B TOK X0 H3MBTC5I HOH3BOH5{ c1JYHKUHH B 3T0 TOqKe
ppawee He3aBHCHMOH HepeMeHHoH
FJ1BH5{ I[HHeHHa5J acm HPHPWHH51 4JyHKUHH B 3T011 TOqKe
ppawee 4JyHKUHH B 3T011 TOK
HpOH3BOHa5I c1JYHKUHH y = Ji — 3x2 paa
3x
1_3x2
(1_3X2)3
3x | ||
J1_3x2 1 | ||
2J1_3x2 | ||
wepeuai YHKUHM y= f(x) | B TOK X0 pae |
dy = f’(x0)dx dy=f’(x0)
dy=
dx
f’(x0)
dY=f0)
dx
M4Jc1epeHuMaJI OT IIpOH3Be,LeHH5I (1)YHKLUIH u = u(x) Fi v = v(x) paieii
d(uv) = udv — vdud(uv)=vdu+udv d(uv) = vdv + udud(uv) = udu — vdv
4IMc1xjepeHuHaI[ BTOOFO llOp5ILKa 4YHKL1HH y = f(x) paieii
|
—a i2 y=ya i x
HpOM3BOHa5 c1JYHKUHH y = COS x paa
—sinx3
—sin3x
— 3x2 sin x3
——3x sinx
HpOM3BOHa51 c1JYHKUHH y = arcsin 2x parnia
Ji — 4x2
1
—
1_4x2
2
J1_4x2
2
1 + 4x2
HpOH3BOHa51 YHKUMM B TO’-IKe paa
THFHC yria HaK.nOHa K 0CM Ox HOMJ1M K KMBO11 B 3T011 TOKTHFHC yria HKJ1OH K 0CM Ox KCTJThHOM K KpMBOH B 3TOM TOKLT1 HKI1OH K 0CM Ox HOMaI1M K KpMBOM B 3TOM TOK
1J1HKI1OH K 0CM Ox KCTJThHOM B 3TOM TOK
HpOH3BOHa51 c1yHKww y = f(x) B TOK — 3T0
— CKOOCTb M3MCHCHM5I YHKUHH B TOK OTHOCHTJThHO W3MHHIIC c1yHKuHM B TOKC
CKOOCTh M3MCHCHM5J apryea OTHOCMTJThHO W3MHHMC apryea
HpOM3BOHa51 CI10)KHOI1 c1yHKuHH y = f(p(x)) paa
— f’(q(x))
f(q’(x))
f’(q’(x))
— f’(q(x))
Hp0M3B0Ha51 BT00F0 II0p5ILKa OT YHKUMH y = Sin x paa
sin x cos2 x
—Cosx
—sinx
Hp0M3B0Ha51 o6paTHoii 4YHKU1111 x = g(y) K 4YHKU1111 y = f(x) no opyiieg’(y) = -f’(x)
1
f(x)
f (x)
1
f’(x)
Hp0M3B0Ha5I c1JYHKUHH y = 1og x paa
1
x ax in a
x
1 x in a 1
x
HpOH3BOHa51 4YHKUMM =
— sin2 x cos x
1
cos x
1
ctg2x
ctgx
paa
HpOH3BOHa51 BTOOFO nop5I,LKa OT YHKUHH y = COS X paa
— COsx
sin2 x
—COsx
—sjnx
HpOH3BOHa51 YHKUHH y = paa
sin x
COSx
1
sin2 x
tgx
sin x ctgx sin x
HpOH3BOHa5I BTOOFO HOp5ILKa OT 4YHKUHH.Y in X paa
x2
x 2
—1
EcJ1H B HeKOTOpOii TOK x0 K KpHBOii y = f(x) HepHeHLHKyII5IpHa K ocii Ox, TO HOH3BOH51 B 3T0 TOK
paa HJTLO
paa 1
He CYTUeCTBYeT
HeHpepJIBHa
HpOH3BOHa5I c1JYHKUHH y =
tgx
paa
cos x
cos2 x
1
sin x
1
sin x
HpOH3BOHa51 c1yHKurn1 y = arctgx paa
1+ x2
arcctgx
—tgx
1
sin x
HpOM3BOHa51 c1yHKuHH y = aX paa
ax in a
a1na
_xa_X_
—a1na
4HddepeHuHan pae
dii dv
vdu — udv
udv — vdu
V
vdu + udv
V
H4J4JepeHuHan d(C + f(x)), re C — HOCTO5{HH5{ BenHqHHa, pae
C+f’(x)dx (C + f’(x))dxf’(x)dx
f’(x)
)jHflepeflqwan 4, 4y.iwipni y=In3x pae 3ln2xdx
x
—3ln2xdr
3m xctr
x
)jHddepemwan4, tyHI[ILHM)‘ = Sill2 X paBeH
—2coscfr
— —sin2x&
—sin2x&
—2sinx&
|
3/3— 2x 7
B TO’-we
HpOM3BOHa5 c1JyHKUHH = 31og3
Sfl X
paa
|
—3sin2 xcosx
3HaeHMe HpOM3BOHOii cjyHKurn1 3) in3 X B TOK
e
3e
—0
H4J4JepeHuHaI1 4yHKUHH y | = esml2x | B TOK | = | pae |
——2edx | ||||
——2dx —2edx |
3HaeHHe HpOH3BOHOfi 4JYHKUHM y = ln(x2 — 2x) B TOK
HpOM3BOHa51 BTOOFO nop5I,LKa YHKUHH y = x2 in x paa
2lnx+1 2inx+3 2lnx+2
HpOM3BOHa51 BTOOFO Hop5I,LKa 4YHKUHH)) = X in X2 paa2
x
x
2+—
x
x
4Iwj4JepeHuHaI1 dy cl?yHKurn1 =
tgxdx dx
cos_ x dx
sln_ x
dx
sln_ x
ctgx
pae
HpOM3BOHa5 4YHKUHH y = Sin XCOSX paa
—cosxsinx
—cos2x
1.
——sin2x
cos2x
M4Jc1epeHuMaJ1 dy 4yHKWW y = tgxctgxpaBeH
ctgxtgxdx dx
-dx
w1JcjepeHuMaJ1 BTOOFO llOp5I,LKa YHKUHH y = c0s2 X pae
— cos2xdx2
— —2cos2xd2x
— cos2xd2x
—2cos2xdx2
HpOM3BOHa51 YHKUHH y = 3S
X paa
3SiflXlfl3sjfl2 sin2x.32x_1 2•3111n3•cosx
3sin2x
4IM4xjepeHuHaI1 BTOOFO Hop5ILKa d2y 4YHKLWH y = COSX Sin X pae
2sin2xdx2 2cos2xdx2
—2cos2xdx2
—2sin2xdx2
TEMA 5. IHjHjepeHUI4aJIbHOe Hc’IHcJIeHhle PyHKHIIII IBYX llMHHbIX (IpaIHeHT n llPOI13BOIHfl 110 HanpaB.JleHllIo)
Z4YHKUHH Z =x2 —xJJ—y3 +5 paa
2x——y3 2x——3y2
—2x—y—3y 2 +5
OHpeeI1eHHe aCTHOii HpOH3BO.LHOIi c1yHKLwH B TO’-we M0 (x0, y0) o epeeo X
BO3MOKHO, ecw c1yHKuH5I
opeeiiea TOJThKO B CaMOii TOT-we M0 (x0, y0)
opeeiiea TOJThKO B HeKOTOpOIi OKCTHOCTH TOT-1K11 M0 (x0, y0)
—He M0(x0,y0)
opeeiiea B TOK M0 (x0, y0) H B HeKOTOpOIi ee OKCTHOCTH
Ec.nH cl?yHKWUI Z = f(x, y). LBa)Kwil Hc134epeHuHpyeMa, TO
—z” z
—zif =z”
—zif =z”
yy
—zif =z”
XX)J)
Z4YHKUHH Z=x2—xfJ—y3+5 paa
— 3y2
—
2y
_x_3y2 +5
x2 —x—3y2
HoIrnbIii wcxjepeHuHaI1 cl?yHKUHH Z = f(x, y) oHpeLeINeTc5 HO c1OPMYJIe
dZ =(z +Z)dxdy
Z,dy
dZ = Zdx-Zdy
dZ=Zdx+Z,dy
Z4YHKUMM Z = — — + 5 paa
1
—0
Z4YHKUMM Z =x2 —xJJ—y3 +5 paa
1
1
—2— 1
—2x
HOJIHbIM wc1xjepeHunaJ1 BTOOFO Hop5ILKa 4YHKuHH Z = f(x,y) pae
Zdx2 +Zdy2 Zdx2 —Zdy2 (Zdx)2 +(Z,â5’)2
Zdx2 +2Z’dxdy+Z’dy2
Z, 4JyHKWW Z = x2 in 3) paa
2x+—
3)
2x
3)
2x
3)
x
3)
Z 4YHKUHH Z = x2 in y paa
2+iny
y
my
2 in y
PaBeHCTBO Z = Z nee MCTO,LI15I
— 4JYHKWW Z = f(x, y)
qeTHOll 43YHKLWH Z = f(x, y)
— rno6oii Ba){cLbI.LHc1xjepeHLwpyeMon YHKUHH Z = f(x, y) TOJThKO O.LHOpOHOM c1yHKuHH Z = f(x, y)
Z”, c1YHKunn Z = y2 in x paa
x2
2y-
2y
x
Z 4YHKUHH Z = y2 in x paa
y2
y x
y2
x2
x2
Z, 4YHKUHH Z = + — y2 +7 paa
2 1
3x+
1
—2
6x+
flonHsffl W144ePeHLWaJ1 dz 4yHKLU!M Z = x2 in y pae
2xlnydx+
y
x2dx+lnydy 2x
—dxdy
y
2xylnydx—x2dy y
ilpil CI1OB1k[51X B2 — 4AC < 0, A > 0 KB443TMH51 4opMa Ax2 + Bxy + Cy2 5IBI15ITC5I
3HaKOHeOHpe4eneHHOfl
OTPIWTJThHO
HHOI1O)KIE1TJThHO ollpe.ReHeHH0FI
HOI1O)KIE1TJThHO oHpe4eI1eHHoH
ilpil CI1OBIE1IE1 B2 — 4AC> 0 KB443TMH51 4opMa Ax2 + Bxy + Cy2SIBJIaeTCSI
3HaKOHeOHpe4eI1eHHOit
OTP1k1L1TJThHO oHpe,LeneHHoIE1 HHOI1O)KIE1TJThHO oHpe,LeneHHoIE1HOI1O)KIE1TJThHO oHpe,reneHHoF1
11pM)/C.TIOBIkISIX B2 — 4AC = 0, A <0 KB443THH51 4opMa Ax2 + Bxy + Cy2 5IBJ15ITC5I
3HaKOHeOHpe4eI1eHHOit
OTP1k1L1TJThHO
HHOJ1O)KMTJThHO oHpe_reneHHoF1
HOI1O)KMTJThHO
11pM CI1OBH5{X B2 — 4AC = 0, A > 0 KBa,TpaTHHan 4JopMa Ax2 + Bxy + Cy2 5IBJ15ITC5{
3HaKOHeOHpe4eI1eHHOit
HOTF1T4TJThHO OH4WI[HHOF1HHOJ1O)KHTJThHO oHpeLeneHHoF1 HOJ1O)KHTJThHO oHpeLeneHHoF1
KBapaTHHaS 4opMa —4x2 — 3xy + 2y2 flBI15JTC5I
3HaKOHeOHpe4eI1eHHOit
OT1k1T4TJThHO
HeHOJIO)KHTeJThHO oHpeLeneHHoF1
HOTHT4TJThHO
KBapaTHHaS 4opMa —4x2 + 3xy — 2y2 flBI15JTC5I
3HaKOHeOHpe4eI1eHHOli
OTMT4TJThHO
HHOJ1O)KHTJThHO oHpeLeneHHoF1
HOTHT1TJThHO
KBapamHa51 4JopMa 2x2 — 3xy + 5IBI15ITC5I
— 3HaKoHeoHpe.LeI1eHHo11 OTPHUTJThHO oHpeeI1eHHoM
— HOTPHUTJTbHO oHpeeI1eHHoM
— HO.T1OK14TeJmHO oHpe.LeJIeHHo11
KBapamHa51 cjopMa 4x2 — l2xy + 9y2 51BI151TC5I
— 3HaKoHeoHpe.LeI1eHHo11 OTP14UTJThHO oHpeeI1eHHoM
— HOTP14UTJThHO oHpeeI1eHHoM
— HO.T1OKF1TeJmHO oHpe.LeJIeHHoF1
KBapamHa51 cjopMa —9x2 + 24xy — 16y251BJI51TC5I
3HaKoHeoHpe.LeJIeHHoF1
— OTPF1UTJThHO oHpeeI1eHHoM
— HOTPF1UTJThHO oHpeeI[eHHoM
HeHO.nOKF1TeJmHO oHpe.LeJIeHHoH
KBapamHa51 cjopMa x2 — 4xy + 5y2 5{BJ15{TC5{ 3HaKOHeOHpe.LeI1eHHOF1
HeHO.T1OKF1TeJmHO oHpe,LeJIeHHoH HOTP11UTJThHO oHpeeI1eHHoM
HO.T1OKF1TeJmHO oHpe,reJIeHHoH
Z YHKUMM Z = + — y2 +7 paa
—2
x3
6x+—2
6x+ 2
HOJlHbIii WffJ4JepeHUHaI1 c1JYHKUHH Z = y2 in X pae
2xydxdy
—lnxdx +y2dy
YdX + 2ylnxdy
—dxdy
HOI1HbIIi H4J4JepeHUHaI1 c1JYHKUHH Z x3e2 pae
—x2e2”(3dx + 2xdy)xe2(3dx + x2dy)
—x2e2(3dx — 2xdy)x2e2(3dx + 2xYdY)
HOIIHMiI w epeiwai cjyHKLUrn Z = x2 cos 2y pae
— 2x(cos 2ydx — x sin 2ydy)
— x(2 cos 2ydx — x sin 2ydy)
— 2x(cos 2ydx + x sin 2ydy)
x(2 cos 2ydx + x sin 2ydy)
HOI1HMIi.2wcxjepeHLwaJI c1yHKwrn Z = pae
— x(2 cos ydx + x sin ydy) x(2 sin ydx — x cos ydy) x(2 cos ydx — x sin ydy)
— x(2 sin ydx + x cos ydy)
Z 4yHKurnI Z = paa
6x2tgy cos2y
2x2tgy
cos2y 6x2tgy
cos2y 6x2tgy
sin2y
Z 4YHKUMM Z = y2 tg x paa
2y2 cosx
sin3x 2y2 sinx
cos3x
2y2 cosx
|
|
Z 4yHKUMM Z = xsin2y paa
—2xcos2y
—4xsiny
—2x cos 2y 4x cosy
HOJlHbIIi wI4J4JepeHuHaIl 4JYHKUHH Z = in 1Jx2 + y2 pae
—xdx +ydy
x y
xdx+ydy
,Jx2+y2
xdx+ydy
x2+y2
Z dyHKuHH Z = y2tgx paBHa2ysec2x2y secx cosecx—2ysec2xy secx cosecx
Z1, 4yHKwrn Z = x2sin2y paBHa—2x sin 2y2x sin 2y4x sin y4x cosy
TEMA 6. OdiloBilbie TdOdMbI J1I)dPdHhIHJIbHO[O nc’IncJIeHHsI. ilpilMelleilne IIPOII3BOJIHOII JIJI1I IICC.JIeJIOBaHIISI cjyHKu1III
YHKUH5I y=f(x) 11MT B TO’-IKe Xo MaKCHMyM, ec.rw
f’(x0) = O,f”(x0) = 0
f’(x0) = 0, f”(x) <0
f’(x0) >0, f”(x0) <0
YCJIOBHeM BM11KJ1OCT11 KpHBOH yf(x) B F1HTBJ1 (a, b) 5IBJ15ITC5I
f”(x)=O
f”(x)>O
— f’(x)<O
f”(x)<O
YCIIOBHeM BOFHTOCT11 KpHBOH y=f(x) B 11HTdBJ1d (a, b) 5IBII5IdTC5I
— f(x) <0
— f’(x) >0
tyHKuw1 y = f(x) B TO’-we X0 MMddT MMHMMyM, eci
f’(x0) = O,f”(x0) <0
f’(x0)< 0, f”(x0) >0
f’(x0) >0, f”(x0) = 0
f’(x0) = 0,f”(x0) >0
tyHKuH5{ f(x) HMddT B TO’-we X0 MaKCHMyM, dCJT[I I15{ BCex X 113 HeKOTOpO1i OKdCTHOCTH TO’-IKM X0 BMHOJIH5{dTC5{ HdBdHCTBO
f(x0) f(x)
f(x0) 0
f(x0) f(x)
f’(x0) >0
I’yHKuH5{ f(x) HMddT B TO’-We X0 MHHMMyM, eci JI51 Beex X 113 HeKOTOpOii OKCTHOCT11TO’-IKM X0 BM11OJ1H5{TC5{ HBHCTBO
f(x0) f(x)
f(x0) 0
—f’(x0)<0
f(x0) f(x)
Ec.TIH c1JyHKUH5I y=f(x) BO BHTHHH TOK X0 o6IlacTn oHpe,LeJ1eHwI,LwxepeHunpyeMa H OCTHFT B TOK X0 Hall6oJmmero H HHMHMJIFO 3HaqeHH5I, TO HpOH3BO,LHa5I YHKUHH B 3T011 TOK
f’(x0) 0
— f’(x0) He CYLUCTBYT
f’(x0) =
KpHTHTIeCKHMH TOT-IKaMH c1yHKuHHf(x) Ha 3KcTpeMyM, H3MB}OTC5I TOqKH, B KOTOMX JT5J c1YHKTWHf(X) BMHOI1H51TC5J CJIOBH
Дата добавления: 2015-10-30; просмотров: 105 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
MMT BepTFIKaJmHyIO CHMHT0T | | | HOXOHT epe aaio KOOHHT |