|
‘-THCIIOBOH p5I CXO,LFITC5I, ecylH
peeii ero o6mero iea pae HJi[O
HOCI1OBTJThHOCTE ero qaCTW-IHMX CMM orpaeaHOCI1OBTJThHOCTb ero CTI1HMX CMM HMT KOHHbW npeei
IJTHbI pia MOHOTOHHO y6MBaIOT no a6cornoTnoui Be.rwqHHe
‘-IFICIIOBOFI p5I C HOJ1O)KFITJThHMMFI iienan CXOHTC5I, eC.TIH CXOIWTC5I p5rn, JIeHM KOTOOFO MHMIT J1HOB HHOFO piaCXOIWTC5I p5rn, ‘IJICHM KOTOOFO 6oimme JTHOB HHOFO pa
npeeii ero o6wero iea pae HIIIO
3TOT p51 5JBJ15JTC5J rapMOHwICCKFIM
CorilacHo HHTFJThHOM HH3HK CXOHMOCTH, qHC.TIOBOH p5JL C HOJTO)KHTJThHbIMH
fflHMH a,? pacxoHTc51, CCJTFI Heco6cTBeHHJiln nnTerpaji f f(x)dx, r,e f(n)= a
n=1 1
6omme 1
pae 1
pae KOHe’-IHOMy HCJIy 51BJ151TC51 6ecKoHeHo 6oJmmHM
Coriiacno HH3HK CBHCHH5I qHCJIOBOH p5IL C HO.TIO)KHTCJThHMMH LJ1CHMH paCXOHTC5I,
eciin
PaCXO2WTC5J rapMOHw-ICCKHH p5IL
PaCXO2WTC5J p5I, ‘1JICHM KOTOOFO 6oimme q.JTeFIOB LaHHOro papacxownci p5I, ‘1JICHM KOTOOFO MCHbIIIC J1HOB LaHHOrO p5ILa
pacxownci p5i, COCTaBJICHHMH H3 1IJIeHOB reoMeTpH1ecIcoH riporpeccun
Ho HM3HK 4aIIaM6epa, ecrni lim = > 1, TO 5l C IIOJIO)KHTCJThHMMH IJIeHaMH CXOHTC5{
pacxOwTc5J
CXOHTC51 CIIOBHO
MO)KT KK CXO,LHTbC5I, TK H CXOHThC5I
EcYIH qHCJIoBoH p CXOHTC5I, TO peeii o6er’o iena pa pae
—1
—0
4HCOBO p 1+ — + — +... + — +... H3MBTC
23 n
HTJThHMM
FMOHF1CKF1M
— CXO5JWI1MC5I PUHOHJThHbIM
B HCI1OBOM pe
cO2n fl=13n — 1
peeii o6wero iiea pae
—cc
O6IIWM 1I1eHOMp5I,La 6yer
2n +1
2n
1
2n —1
2n
2n—1
cxDl
FapMOHWIeCKIW p51 — 5{BJ15{TC5{
n=lfl
CXOWITJWMC5I PCXOW{TJWMC5I CJIOBHO CXO5JWHMC5I
a6cornoTHo CXO,L5JWHMC5I
c.02n
B ‘-IFICJIOBOM pe peeii o6wero iiea pae
n=132 —1
Ecim MCJTOBOi pi CXOHTC5{, a C — HOCTO5HOC qHCIIO, TO Ca
pacxOwTc5{
CXOHTC51 111111 paCxO2TC5ICXOHTC51 TOJThKO CI1OBHOCXOHTC51
Ecilil P51Wil H
b,7 CXO5JTC5J, TO
n=1
+b) CxOMTc51, a (a,7 — b) pacxowrci
17=1
— P5U (a ± b) CXO2WTC5I
n=1
p (a ± b) pacxO.!rnTc51
(a ± b) CXOMTC51 CIIOBHO
Heo6xoMMbIM IIH3HKOM CXOLHMOCTFI FICJ1OBMX p5ILOB 5JBJ15JTC5J
lima,1 = 0
fl->cjD
lirna,7 = cc
fl—*cC
|
fl—*QC
|
n—*cfj
‘-IFICIIOBOFI p51 pacxo,LU4Tc5I, ec.TIH
Hpe,re.ri ero o6wero ‘uleHa pae HJTIO
HOCIIOBTJThHOCTb ero acmix CMM HMeeT KOHeqHbIH npeeinpeei HOCIIOBTJThHOCTH ero T-IaCTHT-IHbIX CMM 6ecKoHeeH
‘-IFICIIO ‘-LTIeHOB 6ecKoHeHo
CyMMa IICHOB 6ecKoHeqHoii y6bIBaioweii reoMeTpHecKoH porpecc onpeeiiieci nocopMyJIe
b1q
1—q
+
b1 +q(n—1)
BbIpaeHHe a1 + a-, + a3 + + a + H3bIBCTC5IHocI[eoBaTeJmHocmIo
‘-IFICI[OBMM 5{OM
— apH4JMeTw-IecKoFI nporpeccne reoMeTpwlecKoFl nporpeccne
CyMMOii p5{La S H3MBTC5{
cyMMa nepix fl UICHOB
KOHeHbIii npeeii HocIIeLoBaTeJmHocTH CTHHMX CMMnpeeii o6wero nea pa
— OCTTOK p5J,La
Ecirn B qHC.TIOBOM pe npe.LeJ1 o6mer’o iea pae Hy.wEo, TO p5J,L o6w3aTeJmHo CXO)11TC5I
— o6w3aTeJmHo CXOL11TC5J
MO)KT CXOMTbC51, a MO)KT paCxoHmC5I CXOMTC5J a6COIEIOTHO
Ecirn B qI1C.TIOBOM pe npe,LeJ1 o6mero q.rleHa He HyJTIO, TO 5ICXOMTC51
CXOMTC5J
MO)KT CXOMTbC51, a MO)KT CXO11TbC5JCXOMTC51 CJ1OBHO
ECJTh HeCO6CTBeHHMi HHTFJ1 ff(x)dx pae KOHHOM IICI[y, TO COFJ1CHOF1HTFJThHOM HH3HK CXOL11MOCT11 qHC.TEOBOiI p5IL C HOJ1O)KHTJThHMMH q.lleHaMH
a,, = f(n) CXOMTC51 CI1OBHOPCXOWTC5J
CXOWTC51
MO)KT CXOHTbC51, a MO)KT CXO11TbC5J
COFIIaCHO HH3HK CBHH1151 qHCJIOBOH p5JL C HOJTO)KHTJThHMMH qJIeHaMH CXOHTC5I, CJ1H
CXOWTC5{ p5J), COCTaBJIeHHbIH 113 J1HOB reOMeTpHeCKOH HOFCCHHCXOHTC51 p5J, -1I1HM KOTOOFO MHMJI T-LneHOB LaHHOrO p5JLa
‘-LTIeHM LaHHOrO p5I,La MHMII JIHOB LpyrOr’O p5I,Ta
CXOWTC5{ p5J, -1J1eHM KOTOOFO 6ollbme JTHOB HHOFO p5I,Ta
4TO6bI 3HaKOepeLyIOuw11C5I qHCJIOBOH p5IL CXOHY1C5I a6COJTIOTHO, OH,TOJT)KeH
CXOHTbC5{ CI1OBHOCXOHTbC5{ CXOHTbC5{
CXOHTbC5{ CI1OBHO
4IIL5 HCCI1eLOBaHH5I CXOL11MOCTH 3HaKOepeLyIOwHXC5I p5I,TOB HHMH5ITC5I
HHTerpaJmHbIH HH3HK KomilHH3HK CBHHH5J
HH3HK 4IaI1aM6epa
HH3HK JIeH6HHua
HpFI3HaK aJIaM6epa 5{BJ15{TC5{ LOCTaTOqHMM HH3HKOM CXO,THMOCTH 3HaKOepeyfOIuHXC5I P5LTOB
CTHHHMX 5{OB
5{OB C HOJ1O)KHTJThHBIMH q.rleHaMH
— FMOHWICKOFO p5I,La
HHTeFpaJThHMI1 IIF13HK Komn H11MH5ITC5J JT5J HCCJTOBHH5J CXOLIJIMOCTH
p5I,LOB
— qHC.TIOBMX 5IOB C noHo)KHTeJmHbIMH, MOHOTOHHO y6MBa}OmHMH qyleHaMHCTHHHMX 5IOB
CXO5JTIHXC5I 5IOB
Ecm lima,1 0, TO 5J afl
fl-*D n=1
CXOLHTC51 CXOHTC51 CJIOBHO
pacxOrnTc5’
— CXOHTC51 a6COJIIOTHO
3HaKoepeyIouwiicM a CXO,LHTC5I ycHoBHo, ec.r1HOH PaCXO.IWTC5{
p5J pacxO,LHTc5I, a p5J, COCTaB.TIeHHMH H3 a6COJTIOTHMX BCJ1HHH ‘-LnCHOB,LaHHOFO p51a,
CXOHTC51
p51 CXO,LHTC5J, 11 CXOL11TC5I p5J, COCTaBJTeHHMH H3 a6COJTIOTHbIX BeI[HT-IHH ‘-LnCHOB LaHHOrO
pa
5{ CXO,LHTC5J, a p51, COCTaBYIeHHMH H3 a6COJTIOTHMX BeI[HT-IHH ‘-LnCHOB HHOFO p5LLa, CXOHTC5J
3HaKoepeyIouwiic5I ‘-IHC.TIOBOH p5{T CXOLHTC5I a6COJIIOTHO, ec.TIH
CXOHTC5{ p5{,L, COCTaBHCHHbIH 113 a6COII}OTHMX BCIIHqHH HHOB LaHHOrO pia
peeii ero o6ero luleHa Ho a6cornoTHoi BCJTHHHC pae Hy.JTI0 ulCHbI pa Ho a6coJlIoTHoii BeJIHT-IHHe MOHOTOHHO y6MBa}OT BMHOHH5ITC5{ HH3HK JIeH6HHUa
HpH3HaK JIeH6HHUa 5IBJ15ITC5I
Heo6xoHMMM HH3HKOM CXOL11MOCTH 3HaKOepeLy}OwHXC5I p5I,TOB OCTTOHbIM HH3HKOM a6COIIIOTHOH CXOLHMOCT11 3HaKOepeLy}OwHXC5I p5ILOBOCTTOHbIM HH3HKOM paCXOLHMOCT11 p51LOB
OCTTOHbIM HH3HKOM CXOIWMOCTH 3HaKOepeLyIOwHXC5{ p5{,TOB
Ho HH3HK 4aI1aM6epa, CY1H lirn
= £ <1, TO p5IL C HOJ1O)KHTJThHMMH 1I1eHaMu
‘
CXOHTC5J
MO)KT KK CXOHTbC5{, TK H CXOHTbC5ICXOHTC5{
CXOHTC5{ CI1OBHO
B HCJ1OBOM p5{,re pee o6ero iiea pae
=i3n—2
—0
—cc
CyMMa F1CI1OBOFO p5l,La CYmeCTBYeT, eciTH p5I CXOMTC51
CXOMTC5J
— coepKMT 6ecKoHeHoe ‘-IFICJIO T-LneHOBCOKMT TOJThKO Ho.TloKFlTeJmHMe q.TleHJil
Ecirn ‘-IFICJIOBOFI p51,L CXOHTC5J, TO ero fl-Fl OCTTOK
CTMF1TC51 K 6ecKoHeHocm pae HJI[O
CTMF1TC51 K HJT[O
CTMF1TC51 K e.LHHFlue
CorliacHo HH3HK cpaBHeHH5l, HCI[OBO1 p5J a CXOHTC5I, eciTila <—
n
a > —
n
—a<---
1
—a>
- H - H - M HX yCIIOBHH HH3HK JIeH6HHUa CXOLHMOCTH p5ILOB 5IBJT5ITC5I
a1 <a a1 > a a1 = a a1 a
4HCJ1OBOii p5{L
, 2n +1
CXOHTC5I HO Heo6xowIMoMy HH3HK CXOIWMOCTH CXOHTC5I HO HHTFJThHOM HH3HK
CXOHTC5I CI1OBHO CXOLHTC5{
414C110B014 p5I.L
— CXOMTC51
=i 3n
— CI1OBHO CXOLHTC5J
— CXOHTC5I a6COIIIOTHO CXOMTC5I
4FICIIOBOH p51.L
2n—i
=i2n +1
— CXOMTC5I CI1OBHO
— CXOMTC51 a6COJIIOTHO
CXOWTC5I 110 Heo6xO,L11MoMy 11H3HK CXOHMOCTH CXOMTC5I
4FICIIOBOFI p51.L
pacxowTc5’
iD1
,i=1
CXOLHTC51 110 11H3HK aJ1aM6epa CXOW1TC51 110 Heo6xo,1u1MoMy 11113HKCXOMTC51 110 11F13HK CBHH115I
4HCJIOBOH P5LT
pacxowTc5{
/ ‘,i+1
t—i
,i=1 3n — 2
CXOWTC51 110 11H3HK aJ1aM6epa CXOHTC51 110 11H3HK JIeH6HHUa
a6cornoTHo CXOHTC5J
/ ‘ii+1 .n
4HCJIOBOFI P5LT
pacxo2wTc5I
ii=1 2n—1
CXOWTC5{ 110 11H3HK 4IaJ1aM6epa CXOHTC51 110 11H3HK JIeH6HHUa
a6cornoTHo CXOHTC5{
(_i)’ .n
n=1 5
1?
pacxowTc5I CXOHTC5{ CI1OBHO
CXOHTC5{ a6COJIIOTHO
MO)KT KK CXOLHTbC5I, TK 11 paCxO,THmC5{
P5I
n=i2W +1
CXOMTC5J
CXOIITC5{ 110 11F13HK JTeI16HHUa CXOWITC5{ 110 11F13HK aJ1aM6epa CXOHTC5{ 110 F1HTFJThHOM 11F13HK
/ ‘,i+1
‘-IFICIIOBOFI 2
11=1 fl +1
— CXOMTC5I
— CXOMTC51 a6COIEIOTHO
CXOMTC51 CJ1OBHO
MO)KT KK CXO,LHTbC5J, TK H paCxOHmC5J
CyMMa FICJ1OBOFO p5I,La
n=1n +3
paa KOHe’-IHOMy qHCI[y He CYLUCTBYT
6ecKoHeHa
paa HJTIO
CyMMa ‘-IHCJIOBOFO p5ILa
iD1
11=1 fl + 1
paa KOHe’-IHOMy HCJI
6ecKoHeHa
paa HJTIO
paa 1
CyMMa ‘-IHCJIOBOFO p5ILa
He CYLUCTBYT
6ecKoHeHa
-/ 1 ‘,i+1
|
paa KOHe’-IHOMy HCI[
paa 2
O6WHM J1HOM pia 1— + — — — + 6y,er
1
2n +1
(_ 1)/il
2n —1
(_ 1)/il 2n+1
1
2n —1
TEMA 11. KOMIIJIeKCHbIe ‘iiicjia
4FICIIO l H3MBTC5I MHMMOk e,LnHMueM, ecrni
.2
—1=—
—I =—1
i=—1
.4
—1=—
K KOMHI1KCHOM T-IMCI[y X + ij) COH5DKHHMM 5IBJ15ITC5I KOMHJ1KCHO 1IHCJIO
y+ix x—iy y—ix ix—y
CyMMa KOMHJ1KCHMX qllce.TI Z1 = + l3) Fl Z2 = X2 + lj) oHpe,LeJI5IeTc5I HO 4)opMylle
Z1 +Z2 = (x1 +y2)+i(x7 +yi) Z1 + Z2 = (x1 + x2) — i(y1 + Y2) Z1 + Z2 = (x +x2)+ i(y1 + Y2)
z1 +z2 =x1x2 +iy1y2
EcilM Z =2+3i,To Z2 BHO
12i—5
— 13+12i
—-5
—13
Pa3Hocm ,LWyX KOMHJ1KCHMX qHce.T1 Z1 = X1 +13) H Z2 = + iy2 ollpeLeJ15IeTc51 no
dopMy.rle
Z1 — Z2 = (x1 — x2) — i(y1 — y2)
z1 — z2 = — iy1y2
Z1 — Z2 = (x — Y2) + i(x2 — y1)
Z1 — Z2 = (x1 — x2) + i(y1 3)2)
HpoH3BeeHHe BX KOMHJ1KCHMX cei Z1 = + i))1 H Z2 = X2 + i))2 BHO
Z1Z2 = (x1x2 — y1y2) + i(x1y2 + x2y1) Z1Z2 =(x1x7 +y1y7)+i(x1y7 —x7y1) z1z2 =x1x2 —iy1y2
z1z2 = x1x2 + iy1y2
x2 +2ixy+y2(x2 —y2)+2ixy
—x 2 +y 2
(x2 +y2)—2ixy
Ecm Z = X + 1)) M Z = X — iy, TO ZZ BHO
x2 —y2
(x2y2)
—(x +y) y2 —x2
Ec.nM Z =x—iy,TO Z2 BHO
x2 —y2
(x2 +y2)—2ixy
(x2 —y2)—ixy
(x2 —y2)—2ixy
BbIpaeHHe (3 + 2i)(3 — 21) BHO
—9—41
—9+4j
Ecim Z = x + 1)) II Z = x — iy, TO Z — Z BHO
2x
2(x-iy)
Iy
Ecrn Z = x + iy H Z = x — iy, TO BHO
—1+
2ixy
x2 +y2
—1— 2ixy
x2 —y2
2ixy
x2+y2 x2+y2
Ec.r1H Z =x+iy,To iZ BHO
y+ix x2+y2
(—y + ix)
ix
Ec.r1H Z1 = x + 2iy, Z2 = 2x —1)), TO Z1Z2 BHO
2(x2 —y 2 )+3ixy
2(x2
-y 2 )
—2(x 2 +y 2 )+3ixy
2(x2
+y 2)
Ecm Z = x + ly, TO Z3 BHO
x3+iy3
— y3
(x3 +3xy2)—i(3x2y+y3) (x3 —3xy2)+i(3x2y—y3)
Ecw Z = x — ly, TO Z3 BHO
|
x3 — y3
x3+y3
(x3 —3xy2)+i(3x2y—y3)
Ec.rrn i — MHHM5{ e,nHHHua, TO BHO
—1
K KOMHJIKCHOM ‘-IHC.Lly X — iy COH5DKHHMM 5IBJ15{TC5I KOMHJIKCHO HCJIO
y—ix y+ix x+iy
-x-iy
EcnH i — MHHM5{ eHHHua, TO BHO
—1
Ec.r1H Z1 = x + 2iy, Z2 = 2x +1)), TO Z1 + iZ2 BHO
3(x+iy) (x+y)+2i(x+y)
(x — y) + 2i(x + y)
(x—y)—2i(x+y)
EcilM Z = x + iy Fl Z = x — ly, TO Z + iZ BHO
(x + y) + i(x — y)
(x — y) + i(x + y)
(x + y) + i(x + y)
(x + y) — i(x + y)
Ec.rlM Z = x + iy Fl Z = x — iy, TO Z — iZ BHO
(x + y) — i(x — y)
(x - y) - i(x - y)
(x — y) — i(x + y)
(x — y) + i(x — y)
EcliM I — MHMM5{ e,LHHHua, TO BHO
—1
Ec.rrn Z =x—iy,To iZ BHO
—y+ix y+ix x+y
ix
CyMMa KOpHeiI KBaLqDaTHOFO BHHH51 x2 + 2x +17 = 0 paa
—2
Ecim x1 H — KOHH KBTHOFO BHHH5I x2 — 6x +25 = 0, TO X2 BHO
25
—7
—1
Ecm x1 ii — KOHM BHHII51 + 4x +13 = 0, TO BHO
x2
—2
—3
5 12.
13 13’
12.
1+—i
5
Ec.nM X1 II — KOH11 BHHF151 — 8x +25 = 0, TO (x1 — x2 )2 BHO
—0
—36
—9
—36
EcilM X1 II — KOH11 BHHF151 + 5x +25 = 0, TO X2 BHO
12,5
——12,5
—25
—25
Ec.nM X1 II — KOH11 BHHF151 — 6x +13 = 0, TO (x1 — x2 )2 BHO
—16
—0
——16
—36
Ec.nM X1 II — KOHF1 BHHH5I x2 +9 = 0, TO X, BHO
—9
——9
—6
——6
Ec.nH X1 H X2 — KOHH BHHH5I — 7x + 18,5 = 0, TO X1 + X2 BHO
—7
—14
—5
—0
EcrnZ1=5+4iHZ2=3+i,To paBHO
+41
1,1 + 0,71
1,9 + 0,7i
19 7.
8 8
z
EciZ1=3+ 2IM Z2 =6— 41, TO paBHO
EcJmZi=6_51MZ2=4+31,T0Z1_Z2 BHO
—24—24i
—36—841
—4—841
16—241
EcIIMZ=3 +41, TO Z3paBHo
171 — 1721
——117—44i
—27—64i
—27+64i
Ec.rill Z= 3 — 21, TO BHO
—27—81
—63 +461
—27+81
—9 + 461
Ecrn Z1 = 1 —21 ii Z2 = 2 + 31 ,TO Z Z2paBHo
—6—171
——6—91
10 + 151
—6+171
——28—211
—88—91
—48+331
16—631
EC.TIM X1 Fl X2 —IcopIwypaBFleFrnsl x —lOx+34=O ,TO X1 X2 BHO
—601
—901
—0
——36
EC.TIM X1 LI X2 — KOHFI BHHH5J x — 12x +40= 0, TO X1 + X2 BHO
—72
—64
—481
—12
Дата добавления: 2015-10-30; просмотров: 91 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Bbl6epwre epoe YTBP)KLIHH | | | TEMA 12. 1ftjHjepeHu1IaJIbHbIe ypaBilellhlsi, B aipaypax |