Читайте также:
|
|
survey | connect | accomplish |
vary | characterize | discriminate |
limit | travel | digitize |
refract | navigate | control |
displace | detect | shoot |
accelerate | reduce | attenuate |
receive | record | convert |
Fill in the gaps with correct prepositions.
1. Seismic sources are used ____ exploration and fall _____ one of the two principal categories.
2. Minimum offset is the distance _____ source ____ the nearest receiver.
3. Sample interval is the time interval _____ digital samples ___ the signal, which varies ____ less than 1 ms ____ 4 ms.
4. Geophones respond ____ either vertical or rotational motion.
5. The number ___ geophones ___ each position varies.
6. Taper of the array is the change ___ number of geophones ____ position ___ position.
Make up sentences.
1. the distance/ the nearest/ receiver/ from/ minimum/ offset/ to/ is/ the source.
2. distances/ short/ intervals/ are/ between/ holes.
3. the/ same/ multiple/ a/ from/ repeat/ reflection/ is/ interface.
4. multiple/ between/ intrabed/ bounces/ two/ reflectors.
5. two/ there/ seismic/ sources/ are/ kinds/ of.
6. vertical/ displacement/ geophones/ to/ rotational/ motion/ and/ respond.
7. acceleration/ displacement/ is/ derivative/ of.
8. to/ enhance/ multiple/ receivers/ the/ signal/ are/ used/ reduce/ noise/ and/ to.
Match the terms with their definitions.
1. normal movement | A. number of traces obtained for a common depth point |
2. fold coverage | B. noise pattern that has low velocity that varies from 3500 to 5500 ft/sec |
3. surface wave | C. a line single geophones |
4. air wave | D. property of sampling systems in which an input signal of one frequency can yield the same values as a signal of another frequency |
5. multiple | E. energy traveling from the source to the detectors through the air having a high-frequency component and low velocity of 1100 ft/sec |
6. linear array | F. tapered array |
7. weighted array | G. number of times a subsurface point is surveyed by different sources and detectors |
8. aliasing | H. a repeat reflection from the same interface |
9. digitizer | I. time correction applied to each trace account for its offset |
10. fond | J. device that converts the analog signals from the geophones into discrete samples |
Give definitions to the following terms.
P-wave aliasing
air wave CDP
Answer the following questions.
1. Which parameters of data acquisition are connected with distance?
2. Which parameters of data acquisition are connected with time?
3. What is normal movement?
4. What is velocity of surface wave?
5. Which of the waves has higher velocity: surface or air?
6. What three types of noise do you know?
7. What are the two kinds of multiples?
8. There are two types of seismic sources. What are they?
9. What are the functions of geophones?
10. What is the main function of multiple receivers?
11. What is the difference between linear and tapered array?
12. What is the main advantage of instrumentation?
13. What types of instrumentation do you know?
14. What is aliasing?
15. What is the difference between CDP and CMP?
16. What are the positive effects of reordering of the traces and summing them together?
17. What is end-on?
18. Which shooting configuration is called “pushing the cable” – the closest to the source or the farthest from it?
19. Which type of shooting is between pulling and pushing?
20. Which shooting technique allows to place depth points closer to the line termination?
Describe the diagram (Fig. 2) on page 187.
WORDLIST
ENGLISH | RUSSIAN |
acceleration | ускорение |
account for (v) | вычислить |
acquisition | регистрация |
acquisition project | проект регистрации данных |
advancement | продвижение |
air gun | пневмопушка |
air wave | воздушная волна |
alias (filter) | неоднозначность частотного состава колебания, восстанавливаемого по дискретным данным |
aliasing | появление зеркальных частот |
amplifer-filter-recorder | амплитуда-фильтр |
application | применение, использование |
array | расстановка (сейсмоприемников) |
arrival | приход волны, начало сигнала на сейсмограмме |
attenuate | ослаблять |
be split (v) | быть разделенным |
bounce (v) | отскакивать |
boundary | граница |
capability | мощность, производительность |
capture (v) | записать, зафиксировать |
coherent | связанный, сцепленный |
common depth point | общая глубинная точка |
compressional wave | волна сжатия |
continuity | непрерывность |
conversion | перевод |
data set | набор данных |
development | разработка |
discrete | дискретный сигнал, обособленный элемент |
discrimination | различение/ разрешающая способность |
displacement | смещение |
echolocation | эхолокация |
end-on shooting | сейсморазведка групповым взрывом |
enhanced oil-recovery | добыча нефти с искусственным поддержанием энергии пласта \ улучшенная нефтедобыча |
engineering survey | инженерная съемка |
enhance (v) | улучшать |
environmental survey | съемка окружающей среды |
explosive | взрывчатое вещество |
exponentially | в геометрической прогрессии |
field amplitude | амплитуда поля |
field geometry | геометрия месторождения |
fold coverage | охват кратности перекрытия |
frequency | частота |
frequency output | выходная частота |
full-vector wave-field imaging | полновекторное изображение волнового поля |
gain | Увеличение |
gas chimney | газовая труба |
gather | выборка записей (компоновка) |
geophone | сейсмоприемник |
geothermal energy | геотермальная энергия |
ground-penetrating radar | проникающий в землю радар |
gun array | расстановка пушек |
impedance | импеданс. полное сопротивление |
incidence | охват, сфера действия |
input signal | входной сигнал |
insensitive | нечувствительный |
instrumentation | контрольно-измерительные приборы |
intrabed | внутри |
linear array | линейная расстановка |
mapping | картирование |
mean | средняя величина |
measure (v) | измерять |
medium, media | среда, -ы |
multiple | многократная волна; кратное отражение |
near-surface | зона малых скоростей |
noise pattern | рисунок шумов |
normal movement (NMO) | нормальное приращение (годографа отраженной волны) |
offset | дистанция (расстояние от пункта взрыва до центра ближайшей группы сейсмоприемников) |
plaque | зачумлять |
plotting | нанесение на график, планирование |
positioning | расстановка |
primary reflection | однократно отраженная волна |
processing data | обработка данных |
production | добыча |
pulling the cable | фланговая система с выносом |
pushing the cable | фланговая система (односторонняя) |
P-wave | продольная волна |
random effect | случайный эффект |
ray path | траектория луча |
reduce uncertainties | сокращать неточности |
reflection | отражение |
reflection profile | профиль метода отраженных волн |
reflection seismology | сейсморазведка методом отраженных волн |
refraction | преломление |
rotational motion | вращательное движение |
sample | образец, проба |
sample-and-hold aperture | отверстие \ апертура |
section | сечение, срез |
shallow | неглубокий |
shallow reflector | отражатель верхней части разреза |
shear wave | сдвиговая волна |
shot hole | шпур, взрывная скважина |
shot interval | взрывной интервал (расстояние между точками взрыва) |
signal-to ratio | соотношение сигнал к чему-л. |
sonar | сонар, гидролокатор |
source array | группа источников |
split spread | симметричная расстановка сейсмоприемников |
spread correction | поправка на нормальное приращение времени |
stacking | наложение, складирование |
storage medium | носитель информации, запоминающая среда |
straddle shooting | фланговая система (по центру) |
surface wave=ground roll | поверхностная волна |
survey configuration | форма съемки |
taper | конус; труба с раструбом |
termination line | конечная линия |
timing | измерение времени |
trace | трасса |
tuned air gun array | ряд настроенных пневмопушек |
variable | переменная величина |
velocity | скорость |
vibrator array | расстановка вибраторов / вибрационных сейсмических источников |
weighted / tapered array | утяжеленная, конусообразная расстановка |
3D-seismic technology | трехмерная сейсмическая технология |
APPENDIX. Use the table to tell about the four major geophysical methods used in oil exploration.
SUMMARY OF THE FOUR MAJOR GEOPHYSICAL METHODS
Method | Field | Geologic Application | Action and Control | ||||
I. Gravitational | A. Torsion balance | Oil | Anticlinal structures; buried ridges; salt domes; faults; intrusions | Spontaneous Action No depth Control | |||
B. Pendulum C. Gravimeter | Salt domes; buried ridges; major structural trends | ||||||
II. Magnetic | Oil, mining | Anticlinal structures; buried ridges; intrusions; faults; iron ore, pyrhotite, and associated iron ores; gold placers | |||||
III. Electrical | A. Self-potential | Mining | Sulfide ore bodies | ||||
B. Galvanic application of primary energy | 1. Potential distribution of secondary field measured | (a) Equipotential, potential profile (b) Resistivity (c) Potential-drop ratio | Mining, civil engineering, oil | General stratigraphic and structural conditions; bedrock depth on dam sites; ground water; oil structures; sulfide ore bodies; highway problems; electrical logging | Reaction to Energizing Fields Control of Depth Penetration | ||
2. Electromagnetic field measured | Mining | Sulfide ore bodies | |||||
C. Inductive application of primary energy | Oil, mining | Faults; anticlinal, etc., structure; sulfide ore bodies | |||||
IV. Seismic | A. Refraction | Oil, civil engineering | Salt domes; anticlinal etc., structures; faults; foundation & highway problems | ||||
B. Reflection | Oil | Low-dip structures; buried ridges; faults | |||||
(C.A. Heiland. Geophysical Exploration. NY, 1940)
REFERENCES
1. | D.H. Griffiths, R.F. King Applied Geophysics for Geologists and Engineers. The Elements of Geophysical Prospecting. Oxford, 1981 |
2. | C.A. Heiland. Geophysical Exploration. New York, 1940 |
3. | Robert E. Sheriff's Encyclopaedic Dictionary of Applied Geophysics |
4. | M. T. Sylvia, E.A. Robinson. Deconvolution of Geophysical Time Series in the Exploration for Oil and Natural Gas. Amsterdam-Oxford-New York, 1979 |
5. | В.С. Белоусов. Нефтегазовая промышленность. Основные процессы и англо-русская терминология. – Москва: OOO «Техинпут», 2006. |
INTERNET RESOURCES
http://www.wikipedia.org/
http://www.nj.gov/dep/njgs/geophys/seis.htm
http://www.ig.utexas.edu/about/history/reflection.htm?PHPSESSID=def1b9
http://www.geomore.com/Oil%20and%20Gas%20Traps.htm
http://science.howstuffworks.com/missing-gravity.htm
http://www.brainyquote.com/words/gr/gravity170416.html
http://www.fourmilab.ch/gravitation/foobar/
http://www.geosurvey.co.nz/services.html
http://www.cflhd.gov/agm/geoApplications/SurfaceMethods/931SelfPotentialMethod.htm
http://www.fe.doe.gov/education/energylessons/oil/oil2.html
Chapter 2
OIL EXPLORATION
Т. F. Dolgaya
UNIT 1
Oil exploration
Oil exploration is the search by petroleum geologists for hydrocarbon deposits beneath the Earth's surface. Oil and gas explorations are grouped under the science of petroleum geology.
Lead - in
What is the name of the activity that deals with the search for hydrocarbon deposits?
What does most of this activity depend on?
LISTING – When you list, you write everything that comes to your mind. Write down as many words as you can on the topic “Oil Exploration”.
Terms and Vocabulary
oil seep | выход нефти |
pockmark | оспина |
hydrocarbon generation | образование углеводородов |
deposit | месторождение |
gravity survey | гравиметрическое исследование \ работа |
magnetic survey | магнитная съёмка, магнитная разведка |
scale features | особенности рельефа на карте |
subsurface geology | подземная геология |
seismic survey | сейсморазведка |
reflected sound wave | отражённая звуковая волна |
process of depth conversion | процесс глубинного преобразования |
substructure profile | разрез (профиль) пласта |
identify (v) | определять, идентифицировать |
evaluate (v) | оценивать, рассчитать |
determine (v) | измерять, определять |
buoyancy | плавучесть |
buoyant | лёгкий, плавучий, держащийся на поверхности |
caprock | кепрок (вышезалегающая экранирующая порода) |
seal (v) – sealed – a seal | придавать непроницаемость – изолированный – изолирующий слой |
lead (n) | возможная ловушка углеводородов |
matured hydrocarbons | зрелые углеводороды |
source rock | нефтематеринская порода |
expel (v) | вытеснять |
prospect | поиск, разведка, изыскание, перспективный участок |
chance of success | перспектива |
hydrocarbons in place | углеводороды в пласте |
recoverable hydrocarbons | промышленные запасы углеводородов |
volumetric equation | уравнение объёма |
saturation | насыщенность |
shrink (v) | сжиматься |
expand (v) | расширяться, увеличиваться в объёме |
ratio | соотношение, коэффициент |
GRV (gross rock volume) | суммарный объём породы |
FVF (formation volume factor) | объёмный коэффициент пласта |
burial | захоронение |
reservoir | пласт-коллектор; пластовый резервуар (нефти, газа); нефтеносный слой; газоносный пласт; продуктивный пласт; залежь; месторождение (нефти, газа) |
precursor | предшественник |
Pay attention to the pronunciation the following words. Pay special attention to the letters in bold.
s ur veyprof i le i dentif y b uoy ancy pro c ess substruc ture s our ce h y drocarbons feat ure eq ua tion ra tio de ter mine
2. Read the text “Exploration methods” and do the exercises.
Exploration Methods
Visible surface features such as oil seeps, natural gas seeps, pockmarks (underwater craters caused by escaping gas) provide basic evidence of hydrocarbon generation (be it shallow or deep in the Earth). However, most exploration depends on highly sophisticated technology to detect and determine the extent of these deposits.
Areas thought to contain hydrocarbons are initially subjected to a gravity survey or magnetic survey to detect large scale features of the subsurface geology. Features of interest (known as leads) are subjected to more detailed seismic surveys which work on the principle of the time it takes for reflected sound waves to travel through matter (rock) of varying densities and using the process of depth conversion to create a profile of the substructure. Finally, when a prospect has been identified and evaluated and passes the oil company's selection criteria, an exploration well is drilled in an attempt to conclusively determine the presence or absence of oil or gas.
Oil exploration is an expensive, high-risk operation. Offshore and remote area exploration is generally only undertaken by very large corporations or national governments. Typical Shallow shelf oil wells (e.g. North sea) cost $10 - 30 Million, while deep water wells can cost up to $100 Million plus. Hundreds of smaller companies search for onshore hydrocarbon deposits worldwide, with some wells costing as little as $500,000 USD.
Elements of a petroleum prospect
A prospect is a potential trap which geologists believe may contain hydrocarbons. Five elements have to be present for a prospect to work and if any of them fail, neither oil nor gas will be present.
Terms used in petroleum evaluation
(http://www.wikipedia.org)
Give definitions to the following terms. Learn them.
seep, mature oil, prospect, recoverable oil, lead, migration,
source rock, trap, hydrocarbons in place, seal, reservoir
Find English equivalents to the following Russian sentences.
1. Природные проявления нефти и газа указывают на образование углеводородов.
2. Сложная технология помогает обнаружить нефтяные и газовые месторождения и их протяжённость.
3. Первоначально районы возможного содержания углеводородов подвергаются гравиразведке и магнитной разведке.
4. Возможные ловушки подвергаются сейсморазведке, которая создаёт профиль подземной структуры.
5. Разведка нефти и газа – процесс, связанный с большим риском.
6. Чтобы перспективная площадь была результативной, нужны следующие характеристики: материнская порода, миграция, ловушка, покрышка, коллектор.
7. Скважины, имеющие промышленное значение, составляют 40% от всех недавно пробуренных скважин.
Answer the following questions.
1. What is the name of the activity that deals with the search for hydrocarbon deposits?
2. What is “petroleum geology’’?
3. Are there visible features that provide evidence of hydrocarbon generation?
4. Why do we need highly sophisticated technology in oil and gas exploration?
5. What exploration methods can you name?
6. Is the seismic survey different from the other two?
7. When is oil exploration well drilled? What for?
8. Can you prove that oil exploration is a high–risk operation?
9. What do smaller companies search for?
10. When does a prospect work?
11. What elements should be present for the prospect to work?
12. When are hydrocarbons formed?
13. Why are hydrocarbons expelled from the source rock?
14. Could you name 3 density related mechanisms?
15. Why do hydrocarbons migrate upwards?
16. Are all hydrocarbons get trapped?
17. Where are they trapped?
18. Why do hydrocarbons staying in traps?
19. Characterize a reservoir rock.
20. What becomes of oil and gas when they are brought to the surface?
Terms and Vocabulary
entrapment | улавливание, захват |
interpret | расшифровывать |
gravity meter | гравиметр |
magnetometer | магнитометр |
core samples | образцы керна |
sniffer | газоанализатор |
seismology | сейсмология |
reflect back | отражать |
density | плотность |
hydrophone | гидрофон |
seismometer | сейсмограф |
obtain (v) | добывать; приобретать |
terrain | местность; территория, район |
measure (v) | измерять, мерить; отмерять, отсчитывать |
indicate (v) | показывать, указывать |
detect (v) | замечать, открывать; обнаруживать |
Pronounce the following terms. Pay attention to the letters in bold.
int er pret magnetom e ter s ei smology h y drophone s ei smometer
7. Scan the text “Finding Oil” and answer the after-text questions.
Finding Oil
The task of finding oil is assigned to geologists, whether employed directly by an oil company or under a contract from a private firm. Their task is to find the right conditions for an oil trap – the right source rock, reservoir rock and entrapment. Many years ago, geologists interpreted surface features, surface rock and soil types, and, perhaps some small core samples obtained by shallow drilling. Modern oil geologists also examine surface rocks and terrain, with the additional help of satellite images.
However, they also use a variety of methods to find oil. They can use sensitive gravity meters to measure tiny changes in the Earth’s gravitational field that could indicate flowing oil, as well as sensitive magnetometers to measure tiny changes in the Earth’s magnetic field caused by flowing oil. They can detect the smell of hydrocarbons using sensitive electronic noses called sniffers. Finally, and most commonly, they use seismology, creating shock waves that pass through hidden rock layers and interpreting the waves that are reflected back to the surface.
The shock waves travel beneath the surface of the Earth and are reflected back by the various rock layers. The reflections travel at different speeds depending upon the type or density of rock layers through which they must pass. The reflections of the shock waves are detected by sensitive microphones or vibration detectors – hydrophones over water, seismometers over land. The readings are interpreted by seismologists for signs of oil and gas traps.
(David Lambert “The Field Guide to Geology”, Cambridge University Press, 1998)
Find the answers to the following questions.
1. What specialists usually find oil?
2. What is their task?
3. What did shallow drilling help the specialists to do?
4. How do modern specialists examine surface rocks?
5. Are there new methods to find oil?
6. What do geologists use them for?
7. What does seismology deal with?
8. What is the aim of shock waves?
9. Do reflections travel at different speeds?
10. What are reflections detected by?
11. Are readings important?
Terms and Vocabulary
drill (v) | бурить |
rock sample | образец породы |
core | керн |
survey (v) | производить съёмку или изыскание |
property | свойство, характеристика |
seismic survey | сейсморазведка |
thickness | мощность |
environment | окружающая среда |
drill bit | буровая коронка, долото |
string of pipes | колонна труб |
lubricate (v) | смазывать |
mud | буровой раствор |
gusher | фонтанирующая скважина |
Christmas tree | фонтанная арматура (ёлка) |
well head | устье скважины |
S-wave | поперечная волна |
wildcat well | скважина, заложенная без предварительного геолого-геофизического обоснования |
cut down (v) | сокращать, урезать |
encounter (v) | наталкиваться; столкнуться |
suspended from (v) | висящий, подвешенный |
Pay attention to the pronunciation of the following words.
lubricate search surface structure microscope chemical geophysicist survey environment fluid
10. Read the text “How to Find Oil” and do the exercises.
How to Find Oil
Photographs from aircraft and satellites are used to begin the onshore search for oil and gas which is underground. This cuts down the time spent searching on the surface. The photographs are studied very carefully for the structures where oil might be found. If an area shows promise, then teams are sent to find out more about the rocks.
Geologists and geophysicists work closely together using a variety of methods. All the information is carefully considered, with the help of computer analysis, before any decisions to drill are made. A geologist collects small samples of rock. Sometimes the samples of rock are dug out by hand or cylindrical cores are drilled to give samples which can be cut and studied under a microscope. These help them to find out where the rocks have come from, what they are made of and how the rocks are arranged in strata.
Geologists also find out about the physical and chemical properties of the rocks and the fossil record from ancient times. All these clues give information to build up a picture of the area being surveyed. A geophysicist adds to the information of a geologist by studying the physics of the Earth. Surveys are made of the magnetic field, the gravity and how waves travel through the layers.
Magnetometers measure very small changes in the strength of the Earth's magnetic field. Sedimentary rocks are nearly non-magnetic and igneous rocks have a stronger magnetic effect. Because of these different effects on the magnetic field, measurements can be made to work out the thickness of the sedimentary layers which may contain oil.
Gravitometers measure the strength of the Earth's gravitational pull. This is not the same all over the Earth because of the different densities of the rocks. Igneous rocks like granite are denser than sedimentary rocks. Granite near the surface will have a stronger pull than the same lump deeper down, so measurements help to build up more information about the layers of rock.
Shock waves or seismic waves are used to help give a picture of deep rock structures. The idea is to make artificial shock waves and record how they travel through the Earth. The shock wave travels through the water and strikes the sea bed. Some of the energy of the wave is reflected back to the hydrophones. The rest of the wave carries on until it reaches another rock layer.
The time taken for the waves to travel from the source to the hydrophones is used to calculate the distance traveled - hence the thickness of the rock layers. The amplitude of the wave gives information about the density of the reflecting rock. A survey using artificial shock waves is called a seismic survey. The data from a survey is recorded and displayed by computer as a pattern of lines, called a seismograph.
Sometimes, surveys show that a structure is present which may contain oil and gas. If so, an exploratory well or wildcat well is drilled. Very few exploration wells find oil. Even in areas like the North Sea, where we know a great deal about the geology, only one in every eight wells which are drilled will find oil or gas in quantities worth developing.
Drilling is a very expensive activity, with each well on average costing several million dollars. Even with today's technology, there is still a low probability that oil or gas will be found. Most oil wells are between 900 and 5,000 metres deep, but it is now possible to drill 8 km below the surface, an achievement made possible by skilled operators using powerful equipment and advanced technology. However, the costs of drilling can double or treble when in very deep water, hostile environments and when high pressure or temperature is encountered.
The rock is drilled with a rotating drill bit, similar to those that are used to drill a hole in wood. The drill bit is attached to a string of steel pipes, each approximately 9 metres long. The derrick, the structure that stands above the hole, must be strong, as the drill pipe and bit are suspended from it. Only a small proportion of the total weight of the drilling string is allowed to bear on the drill bit. This proportion will vary depending on the rock formation being drilled. The derrick must also be tall enough to enable the individual lengths of drill pipe to be added to or removed from the string.
The drilling process is lubricate d and cooled by a carefully constituted mud. This passes down inside the pipes to the drill bit and then returns to the top of the hole between the pipe and the sides of the hole, bearing rock debris with it. This provides the geologists with rock samples to indicate the kind of rock the drill is passing through.
The weight of the mud also prevents the escape of oil or gas if it is found. Usually the gas or oil is under pressure in the ground. To stop wasteful and dangerous gushers, a set of valves called a Christmas tree is fitted to the well head to control the flow of fluids from the well.
(Material is supplied by the Institute of Petroleum)
Form adjectives and nouns from the following verbs.
search lubricate measure drill flow waste trap migrate explore saturate
Give the Russian equivalent to the following terms.
onshore search | to give a picture of deep rock structures |
show promise | the time taken for the waves to travel |
teams | to calculate the distance traveled |
fossil record | the reflecting rock |
the rocks are arranged in strata | oil and gas in quantities worth developing |
the area being surveyed | a low probability |
to work out the thickness | advanced technology |
gravitational pull | hostile environments |
to build up more information | rock formation being drilled |
Give the English equivalent to the Russian term.
Аэрофотосъёмка и съёмка со спутников; возможное залегание нефти; перспективная территория; работать в тесном взаимодействии; решение о бурении скважины; небольшие образцы горных пород; состав пород; ранние геологические эпохи; нефтенасыщенные осадочные породы; толщина пластов горных пород; совокупность линий; поисковая или поисково – разведочная скважина; количества, достаточные для промышленной разработки; современные методы исследования; глубокое подводное бурение; неблагоприятная среда; система стальных труб; буровая вышка; буровая колонна и долото; буровой раствор; затрубное пространство; обломки; предотвратить утечку нефти; фонтанирование скважин; фонтанная арматура; устье скважины.
14. Answer the following questions and give more \ extra information.
1. What equipment is used in searching onshore oil and gas?
2. What methods are used to search for oil and gas?
3. Do specialists work closely together?
4. What is a seismic survey?
5. Do surveys show any necessary data?
6. Can you prove that drilling is a very expensive activity?
7. Could you name drilling equipment?
8. How can you stop wasteful and dangerous gushers?
9. What is a carefully constituted mud for?
10. Why must the derrick be strong enough?
Terms and Vocabulary
readings | данные, показания |
exploration | детальная разведка |
relay the dat | передавать данные |
weight | грузик |
variations | колебания |
battery of tests | серия тестов |
survey | исследования |
drill sample cores | бурить для получения кернов |
yield | давать; выдавать; производить |
country rock | вмещающая порода |
topsoil | верхний слой почвы |
background | фоновое |
track down | разыскивать; исследовать до конца |
gangue mineral | минеральная примесь |
counter | счётчик излучения |
underlying rock | подстилающая порода |
bounce (v) | отскакивать |
15. Read the text “Geological Prospecting” and do the exercises.
Дата добавления: 2015-10-26; просмотров: 344 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Acquisition of Seismic Data | | | The life of a well includes several stages. Put the following key words according to the stages and describe each of them. |