Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Предвидение возможности глобальных катастроф

Читайте также:
  1. Авиакатастрофы
  2. Автомобильные катастрофы
  3. АПК РФ и ГПК РФ (в отличие от УПК РФ) не содержат требования о справедливости судебного решения и указания о возможности применять по аналогии УПК РФ.
  4. Возможности денежной эмиссии
  5. Возможности компании
  6. Возможности мага
  7. Возможности окна Сетевые интерфейсы

 

Одним из основных свойств катастроф является то, что они являются непредвидимыми последствиями человеческих действий. Вряд ли люди стремятся сознательно разрушить свой собственный мир (за исключением отдельных фанатиков из апокалиптических сект). Одним из вариантов является возникновение непредвиденных положительных обратных связей, ведущих к резкому усилению тех или иных процессов.

В основе большинства сценариев глобальной катастрофы лежит "цепная реакция" – иначе говоря, самоусиливающиеся процессы с нерегулируемой положительной обратной связью. Цепная реакция позволяет с помощью малых воздействий прийти к мощным изменениям: достаточно создать условия для возникновения самоусиливающегося процесса. В 1931 г. Л. Сциллард понял, что именно цепная реакция на основе некоей формы автокатализа могла бы стать способом высвобождения атомной энергии, однако до открытия деления урана под воздействием нейтронов в 1939 г. не было известно, как именно эту цепную реакцию создать [Smith, 2006]. То, что многие глобальные риски являются результатом быстро раскручивающихся самоусиливающихся процессов, было известно давно, однако моя цель показать, что цепная реакция – это общий универсальный механизм различных глобальных рисков, и это знание может быть использовано для обнаружения других глобальных рисков, в том числе еще не известных.

Очевидно, что цепная реакция лежит в основе принципа действия ядерного оружия. Однако цепная реакция лежит и в основе распространения ядерных вооружений и гонки вооружений вообще. Чем больше стран обладает этим видом оружия, тем больше они способны его распространять, тем более доступны и дешевы его технологии и тем больше соблазн у стран, оставшихся без такого оружия, его обрести. В основе гонки вооружений так же лежит самоусиливающийся процесс – чем больше оружия у противника, тем больше нужно оружия и "нам", и тем больше страх противника, что побуждает его дальше вооружаться. Точно такой же сценарий лежит и в основе риска случайной ядерной войны – чем больше страх, что по "нам" ударят первыми, тем больше у "нас" соблазна самим ударить первыми, а это в свою очередь вызывает еще больший соблазн ударить первыми у наших противников. Ядерная зима, могущая возникнуть после атомной бомбардировки, также может быть самоусиливающимся процессом за счет изменения альбедо Земли – то есть рост снежного покрытия приводит к росту отражающей способности Земли, в результате чего планета охлаждается еще больше.

Точно такой же принцип положительной обратной связи лежит и в основе механизма роста населения и роста потребления ресурсов. Чем больше население, тем быстрее оно растет, и тем больше оно потребляет ресурсов. Однако чем больше население, тем более развитые технологии необходимы, чтобы поддерживать его жизнедеятельность, и тем более высокие технологии оно способно порождать, грубо говоря, за счет роста числа людей изобретателей. Таким образом, как показал А.Коротаев, скорость роста населения оказывается пропорциональна квадрату числа людей (dN/Dt=N*N) [Коротаев, 2007]. Первое N в правой части этой формулы связано с ростом числа матерей, а второе – рост числа изобретателей. Решением этого дифференциального уравнения является гиперболическая кривая (достигающая бесконечности за конечное время – а именно, согласно вычислениям Форестера, в 2026 г. [Forester, 1960]). Гиперболически растущее население должно потреблять гиперболически увеличивающееся количество ресурсов, что несовместимо с принципиальной конечностью ресурсов материального мира.

Надо учитывать, что даже если само население не растет, в современных условиях информационной революции уровень жизни его повышается. С 1960-х гг. гиперболический рост населения прекратился, однако начался очень быстрый рост совокупной мощности компьютеров (произведения числа установленных компьютеров на мощность каждого компьютера, каждая из которых растет экспоненциально) и если учесть число установленных компьютеров, то закон гиперболического роста в первом приближении продолжает действовать. В синергетике есть точные математические модели описываемых здесь процессов, называемые "режимами с обострением". Они описывают процессы, при которых одна или несколько моделируемых величин обращаются в бесконечность за конечный промежуток времени [Капица, Курдюмов, Малинецкий, 2001]. Однако ввиду неопределенности данных и моделей, касающихся будущих глобальных катастроф, трудно сказать, какие именно из этих количественных моделей здесь подходят.

Гиперболический рост очевидным образом сталкивается с ограниченностью любого ресурса, что потенциально создает катастрофическую ситуацию. В принципе эта проблема разрешима и через сберегающие технологии, и через скачок на новый технологический уровень, но важно то, что и в этих случаях рано или поздно проблемная ситуация способна вновь возникнуть за счет других форм положительной обратной связи.

Этот пример заставляет повнимательнее присмотреться к тем процессам, которые пока рассматриваются нами как позитивные или скорее полезные. Например, закон Мура (названный в честь открывшего его сооснователя фирмы "Intel" Г.Мура) гласит, что число транзисторов на одном кристалле удваивается каждый год. Он описывает таким образом усложнение компьютерной техники как самоусиливающийся процесс с неконтролируемой положительной обратной связью. Во-первых, более быстрые компьютеры позволяют эффективно проектировать еще более быстрые чипы. Во-вторых, деньги, заработанные на одном этапе миниатюризации, позволяют осуществить следующий этап уплотнения чипов. Темп реализации закона Мура задается той частотой, с которой потребители готовы менять технику на более продвинутые модели. Более быстрый темп инноваций не выгоден, если потребители не успеют накопить достаточно денег на полный апгрейд системы (даже если бы им удалось внушить, что он необходим), а более медленный не способен вытянуть из потребителей все деньги, которые они готовы тратить на обновление своих систем.

Готовность потребителей покупать новую технику требует каждый раз все более существенного апгрейда, в результате чего возникает экспоненциальный рост. Получается, что экономические основы закона Мура сильнее технологических проблем на его пути. Хотя подобное описание явно упрощает реальную экономику закона Мура, оно хорошо объясняет экспоненциальный рост в условиях информационной революции. NBIC-конвергенция (что расшифровывается как нано-био-инфо-когно) разных технологий также является самоусиливающимся процессом [Скробов, 2005].

В итоге возможным результатом такого позитивного процесса, как информационная революция, могут стать глобальные риски, создаваемые ИИ, процесс развития которого связан с его рекурсивным самоулучшением, то есть цепной реакцией его усиления – а именно с ситуацией, когда ИИ станет настолько интеллектуальным, чтобы начать улучшать собственную конструкцию. Еще в 1991 г. Назаретян показал, что в XXI в. неизбежно развитие неподвластных человеку систем ИИ, которые будут недоступны для понимания человека ввиду своей сложности и будут все дальше и дальше удалятся от человека за счет своей автоэволюции, если только человек сам не встроится в этот процесс [Назаретян, 1991]. Ему возражал Е.Седов, говоря, что гораздо опаснее не гипотетическая "субъективизация компьютеров", но уже имеющая место сейчас (в 1992 г.) – компьютеризация человека, который превращается в роботизированный придаток компьютера [Седов, 1992, с. 84–86].

Вторая цепная реакция, возможная относительно ИИ, – это процесс нарастания его автономности. Создатели ИИ могут создать такие условия, чтобы они и только они могли бы им управлять. Ключевое здесь слово "только". Борьба внутри группы управляющих приведет к выделению лидера. Такое ограничение доступа кончится тем, что у этого ИИ в любом случае рано или поздно окажется один главный программист (причем это может стать внешне второстепенный человек, но который оставил "закладку" в управляющем коде). Любой сбой аутентификации, в ходе которого ИИ перестанет "доверять" своему главному программисту, станет, возможно, необратимым событием. Наличие официального главного программиста и второстепенного программиста, сделавшего закладку, может привести как раз к такому конфликту аутентификаций, в результате которого ИИ откажется аутентифицировать кого-либо то ни было. Автономный ИИ, активно противостоящий любым попыткам его перепрограммировать или выключить – реальная угроза людям.

Наконец, еще одна цепная реакция связана с распространением по миру знаний о том, как создать ИИ, и появлению все новых групп по работе над этой темой со все более низкими стандартами безопасности.

Еще одним вариантом этого сценария может стать контакт с инопланетной цивилизацией. Обнаружение инопланетных сигналов по линии SETI, содержащих описания неких компьютеров и программ к ним, вызвало бы цепную реакцию интереса к ним во всем мире, что неизбежно имело своим результатом многократную загрузку инопланетных посланий, что, в конечном счете, могло бы привести к запуску опасного кода (то есть описания враждебного людям ИИ, который использует Землю, чтобы дальше распространять свои копии), если он в них есть. Само распространение такого ИИ по Галактике тоже подобно цепной реакции [Carrigan, 2006].

Наконец, большие надежды и одновременно глобальные риски связаны с нанотехнологиями. Способность к саморазмножению очевидно представляет основной из таких рисков, как в связи с проблемой "серой слизи", то есть неконтролируемым размножением нанороботов в окружающей среде, о чем подробно писал Р.Фрайтас в статье "Некоторые пределы глобальной экофагии биоядными нанорепликаторами" [Freitas, 2000], так и в связи с тем, что распространение этих технологий по планете примет характер цепной реакции.

Новым глобальные риски создает преступная деятельность в различных областях, в том числе в области совершенствования военной техники. Эти риски многократно увеличиваются при вторжении в развитие ситуации процессов с положительной обратной связью. В частности, появляется возможность создания с помощью новых технологий сверхнаркотика, который бы превосходил все существующие вещества по силе зависимости и по легкости приготовления. (Впервые такую возможность обсуждали братья А. и Б. Стругацкие в романе "Хищные вещи века" [Стругацкие, 1965]). Сверхнаркотик представляет опасность также за счет создаваемой им цепной реакции. Во-первых, каждое новое удовольствие сдвигает точку отсчета для оценки последующих, и в силу этого человек, если у него есть желание и возможность, стремится перейти ко все большим наслаждениям и ко все более сильным раздражителям. Во-вторых, знание о наркотике и увлечение им также распространяется по обществу как цепная реакция.

Именно способность к саморазмножению делает опасным биологическое оружие, как в связи с легкостью размножения опасных возбудителей в лаборатории, так и во внешней среде, и здесь мы имеем явный пример цепной реакции. Точно также цепная реакция касается и стратегической нестабильности, создаваемой им, и количества знаний о нем и количества людей, вовлеченных в биохакерство.

Есть также большой класс потенциально опасных физических явлений, которые могут принимать характер цепных реакций или обусловлены теми или иными сильными положительными обратными связями.

Например, дегазация земных недр в результате экспериментов со сверхглубоким бурением в духе зонда Д.Стивенсона, который представляет собой огромную каплю расплавленного железа, проплавляющую верхнюю мантию (этот гипотетический, но технически реализуемый проект был предложен Стивенсоном в 2003 г. [Stevenson, 2003] и подвергнут жесткой критике как небезопасный М.Чирковичем и Р.Кэткартом [Circovic, Cathcart, 2004]) была бы самоусиливающейся реакцией, так как нарушенное метастабильного равновесие растворенных газов в недрах привело бы ко все более интенсивному их выходу на поверхность, как это происходит в вулканах. Однако здесь не было бы естественного ограничителя процесса, как это имеет место в случае обычного извержения вулкана, которое ограниченно объемом магмы в магматической камере, поскольку в этом случае дегазация, при наихудшем раскладе, происходила бы с глубины жидкого земного ядра, и масса газов, растворенных в нем, многократно превышает массу земной атмосферы.

Другим вариантом идеи об опасном неограниченно усиливающемся физическом процессе является предположение о маловероятных рисках глобальных катастроф в результате крайне важных для человечества физических экспериментов на ускорителях. Например, в случае образования микроскопической черной дыры на Большом адронном коллайдере риск состоит в самоусиливающемся процессе реакции захвата ею обычного вещества, поскольку чем больше масса черной дыры, тем быстрее она захватывает вещество (см. обзор рисков коллайдера Э.Кента [Kent, 2004]). Тоже верно и для сценария с образованием гипотетической частицы, состоящей из кварковой материи стрейнджлета, способной захватывать и превращать в другие стрейнджлеты обычную материю.

Наконец, фазовый переход "фальшивого" вакуума в "истинный" также был бы цепной реакции, которая, начавшись в одной точке, охватила бы всю Вселенную. Событием подобного рода, согласно некоторым космологическим теориям, был этап Большого взрыва, называемый космологической инфляцией, и фазовый переход нашего вакуума был бы равносилен разрушению наблюдаемой Вселенной. Подробнее этот риск рассмотрен М.Рисом и П.Хатом в статье "Насколько стабилен наш вакуум" [Hut, Rees, 1983]. Неограниченными эти процессы делает то, что никакая комбинация обычной материи не может им противостоять, и в результате, если они начнутся, то не остановятся до того момента, пока не поглотят всю Землю.

Предвидение социально-экономических катастроф

Крах мировой социально-политической системы в духе теории хаоса также предполагает цепную реакцию, где один сбой следует за другим, образуя лавину. Например, та модель развития событий, которую мы уже наблюдали в середине XX в., когда экономическая депрессия и нехватка ресурсов ведут к войне, война ведет к скачку инвестиций в прорывные военные разработки, а затем к применению принципиально нового оружия, после чего открываются физические возможности для полного уничтожения мира (кобальтовая бомба) и создаются подходящие для этого военно-политические доктрины (вроде взаимного гарантированного уничтожения). Возможно, что кризис ипотечного кредитования, пик уровня добычи нефти, обусловленный физической ограниченностью ее запасов, и ряд других современных проблем – это первые стадии такой геополитической цепной реакции.

Цепная реакция лежит также в основе экономических кризисов вообще и начавшегося сейчас мирового экономического кризиса, в частности. Примером цепной экономической реакции является паника на бирже и бегство клиентов из банка. Чем больше людей продает акции, тем больше падает их цена, что вызывает еще большую панику и вынуждает продавать тех, кто этого не хотел. В нынешней ситуации прохождение пика цен на американском рынке недвижимости запустило каскад самоусиливающихся процессов. Чем больше неплатежеспособных кредиторов вынуждено продавать свои дома, тем больше домов на рынке, тем ниже падает их цена, тем большему числу людей выгодно перестать выплачивать свой ипотечный кредит и продать дом; кроме того, тем хуже положение банков, тем ниже рост экономики, тем больше безработных, что опять-таки приводит к тому, что они продают свои дома и т. д. (Отмечу, что выработка потенциала действия нейроном в мозгу, то есть электрического разряда, передающего сигнал другим нейронам, тоже происходит по этой схеме после прохождения критического порога.)

При анализе подобных процессов особенно важно то, что положительная обратная связь создает схожие проблемы не только в развитии общеэкономических процессов, но и в более частных явлениях, в частности, в кредитном цикле Х.Мински. Эта модель названа по имени экономиста, сыгравшего большую роль в формировании посткейнсианской экономической теории. По его мнению, кредитная система в процессе ее развития является мощным дестабилизирующим фактором экономики. Она развивается как финансовая пирамида, то есть учреждение, которое может выплачивать старые кредиты, только постоянно привлекая новых кредиторов. Чтобы такое учреждение могло функционировать сколько-нибудь долгое время, его долг тоже должен экспоненциально расти. Этот тип заемщиков ("заемщики Понци", названные по имени создателя крупнейшей финансовой пирамиды 1920-х гг.) начинают закономерно доминировать в процессе стабильного развития экономики, но в конце концов оказываются неплатежеспособными и тогда возникает "момент Мински" – крах экономической системы.

В последнее время финансовые аналитики как в США, так и в России связывают современное кризисное состояние мировой финансовой системы именно с процессами, связанными с моментом Мински. В результате появляется необходимость в переоценке всей капиталистической системы и деятельности свободного рынка. "Цена капитализма, – указывает американский экономист Р.Барбера, – складывается из стоимости формирования финансового пузыря и стоимости спасения сектора правительством после того, как этот пузырь лопнул" (цит. по [Момент... 2009]). Рост кредитного пузыря также является самоусиливающимся процессом, поскольку чем больше долгов набрано, тем больше денег нужно для их обслуживания.

Если предположить, что развитие событий в начале XXI в. аналогично процессам ХХ в. (то есть считать первый кризисный 2008 г. за новый 1929 г.), то можно предсказать, что до новой "атомной бомбы" осталось 16 лет (то есть она будет создана в 2024 г.), до идеи новой кобальтовой бомбы – 21 год (в 2029 г.), а до нового Карибского кризиса, реально ставящего мир на грань уничтожения – почти 33 года (2041 г.). Такие цифры не следует считать сколько-нибудь достоверным пророчеством, но ничего лучше этих оценок у нас пока нет. Не трудно заметить, что получившие цифры близки к датам ожидаемой Технологической Сингулярности.

Можно предположить, что в случае гипотетического "кризиса кризисов", то есть глобального кризиса, который объединит в себе все отдельные (экономические, политические, военные, экологические) кризисные явления, цепная реакция будет состоять из серии разнородных других цепных реакций, как, например, мы видим это в экономике, где бегство клиентов из одного какого-то банка является только эпизодом в разворачивающемся глобальном кризисе всех областей хозяйствования.

 

Препятствия для возникновения глобальных кризисов

Интересно понять, какие силы препятствуют возникновению цепных реакций – ведь в большинстве случаев в реальности глобальные катастрофы не происходят или ограничены по масштабам. На примере ядерной реакции можно понять, что для начала цепной реакции нужно наличие "критической массы" и отсутствие "предохранительных стержней". Развитию экспоненциальных процессов мешает также ограниченность ресурса для их роста и/или наличие других самоусиливающихся процессов, "тянущих" в противоположную сторону, в результате чего возникает динамическое равновесие. Для того, чтобы цепная реакция развивалась беспрепятственно, она должна доминировать, быть процессом качественно более высокого уровня энергии, на который не могут влиять силы нижнего уровня. Быстрые скачки в развитии технологий как раз создают возможность для таких неудержимых процессов.

В России процессы с положительной обратной связью исследуются в первую в синергетике и здесь следует обратить внимание на доклад E. Куркиной “Конец режимов с обострением. Коллапс цивилизации” [Куркина, 2007]. Автор сосредотачивается в первую очередь на моделях гиперболического роста населения и ускорению исторического времени, предложенных С.Капицей и С.Курдюмовым. Куркина пишет, что "режим с обострением раньше или позже заканчивается, не дойдя до момента обострения, потому что с неизбежностью включаются факторы, ограничивающие рост функции до бесконечности. Развитие нашей цивилизации в режиме с обострением почти полностью себя исчерпало себя, подойдя по многим параметрам к своему пределу, теперь начинается другая эпоха". Синергетика показывает, что вблизи режимов с обострением увеличивается роль малых возмущений, и что все сложные структуры вблизи режимов с обострением распадаются. Различные математические модели режимов с обострением в глобальном плане рассмотрены в ее новой книге [Новое… 2007].

Однако современное исследование глобальных рисков, проводимых в рамках синергетики, в первую очередь сосредоточенно на росте населения и исчерпании ресурсов, тогда как режимы с обострением, связанные с новыми технологиями, в значительной степени игнорируются. Это объясняется, вероятно, тем, что риски, создаваемые новыми технологиями, гораздо труднее оценить количественно или хотя бы доказать их реальность.

При этом не может не обратить на себя внимания тот факт, что множество разных процессов с обострением должны произойти примерно в одно и то же время – в районе 2030 г.: это и создание способного к саморазвитию ИИ, и исчерпание ресурсов, и график технологических революций по Панову [Панов 2007]. Подобное уплотнение событий я бы назвал "кризисом кризисов" – то есть кризисом, отдельными элементами которого являются не какие-либо свойства системы, а другие кризисы. (Об этом я пишу в книге "Структура глобальной катастрофы", которая готовится к печати.) Панов называет это событие кризисом планетарного цикла истории, который состоит в том, что сама модель следующих друг за другом со все большей частотой кризисов завершится. Очевидно, что должна быть некая общая причина, которая приводит ряд внешне несвязанных факторов к кризису в примерно одно и тоже время. Такой причиной, вероятно, является рост сложности, или, иначе говоря, самоусиливающийся рост суммарного интеллекта цивилизации, благодаря которому она почти одновременно доходит как до пределов доступных ей ресурсов и количества носителей, так и оказывается способной к созданию качественно новых явлений (ИИ и нанотех).

К.Е.Еськов в своей книге «История Земли и жизни на ней», а также в своём радиоинтервью также говорит о том, что революционные изменения в биосфере происходят за счёт цепной реакции изменений, вызываемой малой группой незаметных до того существ, которые обладают новым качеством: «Опыты по экспериментальному видообразованию показывают, что все может происходить очень быстро.

Проблема в том, что эволюция происходит слишком медленно. В нормальных условиях экосистема не дает развиваться эволюционным изменениям. Они происходят только в ситуации развала экосистемы, когда слабнут внутрисистемные связи. Вся эта ситуация четко описана в теории систем.

Представьте, когда у вас каждый из блоков системы начинает оптимизировать свою деятельность, не обращая внимания на другие блоки, – это же цепная реакция развала. Система разваливается на блоки, потом разваливаются и сами блоки. А потом те, которые остались, начинают собираться по новой. Эта общая схема иллюстрируется на примере тех палеонтологических кризисов, которые изучены хорошо, прежде всего, на примере мелового кризиса. Происходила смена мезозойской биоты на современную, по которой публике известно вымирание динозавров. На самом деле это была только макушка айсберга, а том происходили куда более серьезные и интересные вещи. Я возвращаюсь к тому, что когда система перестает репрессировать происходящие изменения, на этом месте начинается цепная реакция… Развал системы обычно начинается с того, что некоторые изменения запускают цепную реакцию. Сейчас все согласны, что запуском механизма меловой революции было появление цветковых растений.» http://www.polit.ru/analytics/2009/07/10/evolution.html

 

* * *

Риски глобальных катастроф требуют международных усилий по их предотвращению. Особенность рисков с мощной положительной обратной связью состоит в том, что они могут формироваться крайне быстро и требуют решительных усилий по их предотвращению еще в зародыше, так как потом будет уже поздно. То есть речь идет о создании глобальной системы, работающей в режиме отрицательной обратной связи. Чтобы предотвращать риски в зародыше, а еще лучше до их возникновения, требуется сочетание двух мощных социальных инструментов: средств прогнозирования и международной системы принятия обязательных для всех решений. Основная проблема в прогнозировании состоит не в самом создании прогноза, а во взаимодействии между создателями прогноза и лицами, принимающими решения. А именно, последние должны выделять среди массы прогнозов, всегда присутствующей как фон, именно те, которым следует уделить наибольшее внимание. Задним числом всегда найдется тот, кто скажет, что предупреждал о нависшей угрозе.

Чтобы не быть голословным, можно рассмотреть ситуацию с распространением свиного гриппа H1N1, который представляет собой типичный неограниченный экспоненциально растущий глобальный процесс. Он не является глобальным риском только потому, что смертность от него относительно невелика (однако летальность может резко возрасти к концу 2009 г., как бывало и при прошлых пандемиях гриппа). Однако уже многие годы существует некоммерческая организация (Flutrackers.com Inc.), которая занимается сбором информации о рисках птичьего гриппа H5N1 и члены которой считают, что весьма велик риск глобальной пандемии с летальностью птичьего гриппа (которая равна 60%). Эта организация ведет учет сообщений о птичьем гриппе и других новых формах гриппа из разных стран. Это не единственная организация такого рода.

Кроме того, существует ВОЗ, которую можно условно считать глобальным органом, ответственным за принятие решений и ключевым элементом механизма отрицательной обратной связи в области распространения инфекций. После возникновения свиного гриппа в апреле 2009 г. в Мексике сразу было понятно, что число заболевших растет экспоненциально, что позволяло сделать прогнозы о большом числе заболевших в ближайшие месяцы. Однако ВОЗ решило не объявлять пандемии до того, пока реальное число заболевших не достигнет значительной величины и болезнь не распространится по всей планете. Это поведение ВОЗ было связано не только с неуверенностью в том, что пандемия будет – все эксперты утверждали, что это произойдет – а с тем, каковы могут быть политические последствия объявления пандемии. ВОЗ стремилась не создавать ненужной паники в условиях, когда все силы пропаганды по обе стороны океана были брошены на обнаружение экономических "зеленых ростков", означающих выход из финансового кризиса.

Иначе говоря, в начале экспоненциально растущего процесса очень велика неопределенность в том, действительно ли это самоусиливающийся процесс и главное, нет ли в нем мощных самоограничителей (и в большинстве случаев такие самоограничители находятся). Все это затрудняет действие механизмов отрицательной обратной связи. К тому моменту, когда масштаб процесса становится понятен, ограничить его становится гораздо сложнее.

Таким образом, мы могли убедиться, что самоусиливающиеся процессы с положительной обратной связью являются основным механизмом будущих глобальных рисков. В ходе таких процессов информационно-энтропийный [Седов, 1993] баланс цивилизации резко нарушается: происходит полное разрушение накопленной информации за счет перехода на качественно новый уровень с низкой энтропией, однако при этом лишенный какого-либо осмысленного содержания (как произошло бы при коллапсе вещества Земли в микроскопическую черную дыру, которая характеризуется только одним простым качеством – массой). Это значит, что мы должны уделять наибольшее внимание тем аспектам исторического и научно-технического прогресса, где могут возникнуть такие неограниченно растущие цепные реакции и выстраивать такие глобально институционализированные формы отрицательной обратной связи, которые могут компенсировать издержки саморазвития и гарантировать безопасность и устойчивость прогресса.

 

 


ЧАСТЬ 2. ОЦЕНКА ВЕРОЯТНОСТИ ГЛОБАЛЬНОЙ КАТАСТРОФЫ


Ник Бостром[112], Макс Тегмарк[113]. Насколько невероятна катастрофа судного дня?

 

arXiv:astro-ph/0512204v2

http://arxiv.org/pdf/astro-ph/0512204

 

How Unlikely is a Doomsday Catastrophe? Nature, Vol. 438, No. 7069, p. 754

 

Эта статья является расширенной версией краткого сообщения, опубликованного в Nature, 438, 754 [1].

 

 

В последнее время были проанализированы многочисленные сценарии уничтожения Земли, включая распад метастабильного вакуума и разрушение планеты, вызываемое «странной частицей» (strangelet) или микроскопической чёрной дырой. Мы хотим показать, что множество предыдущих оценок их частоты дают нам фальшивое чувство безопасности: нельзя выводить заключение, что такие события редки, из того факта, что Земля прожила настолько долго, поскольку наблюдатели находятся, по определению, в тех местах, которые были достаточно везучими, чтобы избежать разрушения. Мы выводим новую верхнюю границу в 1 на 10*9 лет (99.9% c.l. – с достоверностью) на частоту внешней (exogenous) окончательной (terminal) катастрофы. Эта граница свободна от систематической ошибки, связанной с селекцией наблюдателей. Для доказательства этого мы используем данные о распределения возрастов планет и о факте относительно позднего формирования Земли.

 

 

Введение

 

 

учёные недавно высветили ряд катастрофических сценариев, которые могут уничтожить не только нашу цивилизацию, но даже нашу планету или всю наблюдаемую вселенную, – как если бы нам, людям, больше не о чем было бы беспокоиться. Например, опасения, что столкновения тяжёлых ионов на ускорителе релятивистских тяжёлых ионов в Брукхавене (RHIC) могут запустить такой катастрофический процесс, привели к созданию детального технического отчёта на эту тему [2], в котором рассматривалось три категории рисков:

1. Расширение (Initiation) перехода в более низкое вакуумное состояние, которое будет распространяться от своего источника наружу со скоростью света, уничтожая известную нам вселенную [2, 3, 4].

2. Формирование чёрной дыры или гравитационной сингулярности, которая затягивает обычную материю, и возможно, уничтожает Землю. [2, 4].

3. Формирование стабильной странной материи, которая засасывает обычную материю и превращает её в странную материю, вероятно, уничтожая Землю [2, 5].

Другие сценарии катастроф ранжируются от бесспорных до весьма умозрительных:

4. Удары массивных астероидов, близкий взрыв сверхновой и/или гамма всплеск, теоретически могут стерилизовать Землю.

5. Аннигиляция враждебной расой роботов, колонизирующей пространство.

В отчёте, выполненном в Брукхавене [2], делается вывод, что если пункты 1-3 возможны, они с колоссальной вероятностью будут запущены не RHIC, а естественно происходящими высокоэнергетичеными астрофизическими событиями, такими, как столкновения космических лучей.

Все риски 1-5, вероятно, должны считаться внешними, то есть несвязанными с человеческой активностью и нашим уровнем технического развития. Цель это статьи – оценить вероятность (likelihood) за единицу времени внешних катастрофических сценариев вроде 1-5.

Можно подумать, что раз жизнь здесь, на Земле, выжила в течение примерно 4 Гигалет, такие катастрофические события должны быть исключительно редкими. К сожалению, этот аргумент несовершенен, и создаваемое им чувство безопасности – фальшиво. Он не принимает во внимание эффект избирательности наблюдения (observation selection effect) [6, 7], который не позволяет любому наблюдателю наблюдать что-нибудь ещё, кроме того, что его вид дожил до момента, когда они сделали наблюдение. Даже если бы частота космических катастроф была бы очень велика, мы по-прежнему должны ожидать обнаружить себя на планете, которая ещё не уничтожена. Тот факт, что мы всё ещё живы, не может даже исключить гипотезу, что в среднем космическое пространство вокруг стерилизуется распадом вакуума, скажем, каждые 10 000 лет, и что наша собственная планета просто была чрезвычайно удачливой до сих пор. Если бы эта гипотеза была верна, перспективы будущего были бы унылы.

Мы предлагаем способ вывести верхнюю границу частоты космических катастроф, которая неподвержена такой селекции наблюдателей. Мы доказываем, что распределение возрастов планет и звёзд ограничивает частоту многих сценариев глобальной катастрофы, и что сценарии, которые выходят за пределы этой границы (особенно распад вакуума) в свою очередь ограничены относительно поздним временем формирования Земли. Идея состоит в том, что если бы катастрофы были очень часты, почти все разумные цивилизации возникли бы гораздо раньше, чем наша.

Используя информацию о темпах формирования планет, можно вычислить распределение дат рождений разумных видов при различных предположениях о частоте космических цивилизаций. Объединение этого с информацией о нашем собственном временном местоположении позволяет нам заключить, что частота космической стерилизации для обитаемой планеты не больше, чем порядка одного раза на Гигагод.

 

Рис.1: Слева: когда формируетя типичная планета? Справа: Насколько вероятно, что Земля сформируется так поздно.

 

На левом графике показано распределение вероятностей наблюдаемого времени формирования планет, в предположении разных характерных промежутков времени между катастрофами: от бесконечности (заштриховано) до 10, 9, 8, 7, 6, 5, 4, 3, 2 и 1 млрд. лет соответственно (справа налево). Правая часть графика показывает вероятность наблюдения некого времени формирования (больше или равно 9,1 млрд. лет для Земли), то есть области справа от пунктирной линии на левой панели.

 

 

II. Верхняя граница частоты катастроф

 

 

Предположим, что планета случайным образом стерилизуется или уничтожается с некоторой частотой 1/T, которую мы сейчас определим. Это означает, что вероятность выживания планеты в течение времени t падает экспоненциально, как exp(- t/T)

Наиболее прямой путь избежать ошибки от эффекта избирательности наблюдения – это использовать только информацию об объектах, чьё уничтожение не повлияло бы на жизнь на Земле. Мы знаем, что ни одна планета в Солнечной системе от Меркурия до Нептуна не превратилась в чёрную дыру или сгусток странной материи, в течение последних 4,6 гигалет, поскольку их массы были бы по-прежнему заметны по их гравитационному влиянию на орбиты других планет. Это означает, что временная шкала разрушения должна быть соответственно большой, – кроме как в случаях, когда их уничтожение однозначно связанно с нашим, как по общей причине, так и по причине их взрыва, приводящего к разлёту частиц судного дня, вроде чёрных дыр или странных частиц, которые в свою очередь уничтожат Землю.

Эта лазейка в эффекте избирательности наблюдения сужается, если мы примем во внимание экзопланеты, которые мы наблюдали через их частичные затмения их родных звёзд [8] и потому знаем, что они не взорвались.

Частицы конца света, которые обсуждались в литературе, скорее, будут гравитационно захватываться звёздами, а не планетами, и по этой причине наблюдаемое изобилие очень старых звёзд (t больше или приблизительно равно 10 гигалет) (например, [9]) ещё больше уточнит нижнюю границу Т.

Единственный сценарий, который может воспользоваться оставшейся лазейкой систематической ошибки эффекта наблюдения (observer bias loophole) и избежать всех этих ограничений, – это распад вакуума, как спонтанный, так и запущенный неким высокоэнергетичным событием. Поскольку пузырь разрушения распространяется со скоростью света, мы не можем наблюдать разрушения других объектов: мы можем увидеть их разрушение только в тот момент, когда разрушаемся сами. В противовес этому, если сценарии 2 или 3 включают в себя излучение «частиц судного дня» и распространяется, как цепная реакция, медленнее скорости света, мы можем наблюдать сферические чёрные области, создаваемые расширяющимися фронтами разрушения, которые ещё не достигли нас.

Сейчас мы покажем, что временной масштаб вакуумного распада может быть ограничен другим аргументом. Темп формирования f(t) обитаемых планет как функция времени с момента Большого Взрыва показан на рис.1 (левая сторона, затенённое распределение). Эта оценка взята из [10], и основана на симуляциях, включающих создание тяжёлых элементов, взрывы сверхновых и гамма всплески. Если области пространства стерилизуются или разрушаются случайным образом с частотой 1/T, то вероятность того, что случайным образом взятая пространственная область останется неповрежденной, составляет exp(- t/T). Это означает, что распределение условной вероятности (conditional probability) f*(t) для времени формирования планет t с точки зрения наблюдателя – это просто затененное распределение f(t) умноженное на exp(- t/T) и отмасштабированное таким образом, чтобы давать в интеграле единицу. Оно отображено дополнительными кривыми на рис.1 слева[114]. (сноска 1). По мере того, как мы уменьшаем временной параметр (timescale) катастроф T, пик результатирующего распределения (левый график) сдвигается влево и вероятность того, что Земля сформировалась так поздно, как мы это наблюдаем (9,1 гигалет после Большого взрыва) или позже, падает (правая часть рисунка).

Пунктирные линии показывают, что мы можем исключить гипотезы, что T < 2.5 гигалет с 95% уверенностью, и соответствующие 99% и 99,9% интервалы уверенности составляют T> 1,6 и T> 1,1 Гигалет соответственно.

Риски 4-ой категории уникальны тем, что у нас есть хорошие прямые измерения частоты столкновений, взрывов суперновых и гамма всплесков, которые не зависят от эффектов избирательности наблюдения. До сих пор наш анализ использовал статистику обитаемых планет из [10], которая включала в себя (folded in) эти измерения из категории 4.

Наши границы неприменимы в целом к катастрофам антропогенного происхождения, которые стали возможны только после того, как были развиты определённые технологии, например, ядерное уничтожение или истребление с помощью сконструированных микроорганизмов или нанотехнологии. Они так же не относятся к природным катастрофам, которые не смогут необратимо разрушить или стерилизовать планету. Другими словами, у нас до сих пор есть множество поводов для беспокойства [11, 12, 13, 14]. Вместо этого наши границы относятся к внешним катастрофам (спонтанным или вызванным космическими лучами), частота которых не связанна с человеческой активностью, при условии, что они вызывают необратимую стерилизацию.

Наши численные вычисления базируются на ряде предположений. Например, мы полагаем частоту экзогенных катастроф 1/T в качестве константы, хотя нетрудно предположить, что она изменяется в пределах 10% в порядке соответствующей временной шкалы, поскольку сама наша граница T имеет порядок 10% от возраста Вселенной[115].

Во-вторых, частота формирования обитаемых планет опирается на несколько предположений, детально обсуждаемых в [10], которые могут легко изменить результат в пределах 20%. В-третьих, риск событий, вызванных космическими лучами, будет слегка меняться от места к месту, если так же будут меняться сами космические лучи. В-четвёртых, из-за космологических флюктуаций массы, разброс масс будет отличаться на 10% от одного региона размером порядка 10**9 световых лет к другому, так что риск того, что космические лучи вызовут распад вакуума, может варьироваться в том же порядке.

В целом, хотя более детальные вычисления могут изменить количественные границы на множитель порядка единицы, наш основной результат, состоящий в том, что вероятность внешнего уничтожения невелика на человеческой и даже геологической шкале, выглядит весьма надёжным.

 

 

III. ЗАКЛЮЧЕНИЕ

 

 

Мы показали, что жизнь на Земле очень вряд ли будет уничтожена внешней катастрофой в ближайшие 1 млрд. лет. Это численное ограничение получается из сценария, на который мы имеем наиболее слабые ограничения: распад вакуума, ограниченный только относительно поздним формированием Земли. Этот вывод переносится так же и на ограничения на гипотетические антропогенные катастрофы, вызванные высокоэнергетичными физическими экспериментами (риски 1-3). Это следует из того, что частотность внешних катастроф, например, происходящих из столкновений космических лучей, устанавливает верхнюю границу на частоту своих антропогенных аналогов. В силу этого наш результат закрывает логическую брешь ошибки селективности наблюдения и даёт заверения, что риск глобальной катастрофы, вызванной опытами на ускорителях, чрезвычайно мал, до тех пор, пока события, эквивалентные тем, что происходят в экспериментах, случаются чаще в естественных условиях. А именно, Брукхавенский отчёт [2] предполагает, что глобальные катастрофы могут происходить гораздо более чем в 1000 раз чаще в естественных условиях, чем на ускорителях. Предполагая, что это так, наше ограничение в 1 млрд. лет переходит в консервативную верхнюю границу 10**(-12) годового риска от ускорителей, что обнадёживающе мало.

 

 

4. Благодарности:

 

 

Авторы благодарны Adrian Kent, Jordi Miralda-Escude и Frank Zimmermann за обнаружение брешей в первой версии этой статьи, авторам [10] за пользование их данными и Milan Circovic, Hunter Monroe, John Leslie, Rainer Plaga и Martin Rees за полезные комментарии и дискуссии. Спасибо Paul Davies, Charles Harper, Andrei Linde и Фонду John Templeton Foundation за организацию семинара, на котором это исследование было начато. Эта работа была поддержана NASA grant NAG5-11099, NSF CAREER grant AST-0134999, и стипендиями от David и Lucile Packard Foundation и Research Corporation.

 

Литература:

 

[1] M. Tegmark and N. Bostrom, Nature, 438, 754 (2005)

[2] R. L. Jaffe, W. Busza, Sandweiss J, and F. Wilczek,

Rev.Mod.Phys., 72, 1125 (2000)

[3] P. Frampton, Phys. Rev. Lett., 37, 1378 (1976)

[4] P. Hut and M. J. Rees 1983, “How Stable Is Our Vac-

uum?”, Nature, 302, 508 P. Hut 1984, Nucl.Phys. A,

418, 301C

[5] A. Dar, A. De Rujula, and U. Heinz, Phys.Lett. B, 470,

142 (1999)

[6] B. Carter 1974, in IAU Symposium 63, ed. M. S. Longair

(Reidel: Dordrecht)

[7] N. Bostrom, Anthropic Bias: Observation Selection Ef-

fects in Science and Philosophy (Routledge: New York,

2002)

[8] F. Pont, astro-ph/0510846, 2005

[9] B. M. S Hansen et al., ApJ, 574, L155 (2002)

[10] C. H. Lineweaver, Y. Fenner, and B. K. Gibson, Science,

203, 59 (2004)

[11] J. Leslie, The End of the World: The Science and Ethics

of Human Extinction (Routledge: London, 1996)

[12] N. Bostrom, Journal of Evolution and Technology, 9, 1

(2002)

[13] M. J. Rees, Our Final Hour: How Terror, Error, and

Environmental Disaster Threaten Humankind’s Future in

This Century — On Earth and Beyond (Perseus: New

York, 2003)

[14] R. Posner, Catastrophe: Risk and Response (Oxford

Univ. Press: Oxford, 2004)


 


Дата добавления: 2015-10-24; просмотров: 127 | Нарушение авторских прав


Читайте в этой же книге: ЧАСТЬ 1. ОБЩИЕ ОБЗОРЫ ТЕМЫ | Наши наиболее могущественные технологии 21-го века – робототехника, генная инженерия и нанотехнология[2] – угрожают подвергнуть человеческий род опасности. | В качестве последнего средства | Калибровка и сверхуверенность | Глобальные риски | Возражение третье | МЯГКИЙ ПРИНЦИП РАВНОЗНАЧНОСТИ | Бесконечное число вселенных | Ошибки в формуле | Введение: угрозы существованию и эффекты наблюдательной селекции |
<== предыдущая страница | следующая страница ==>
Возможность катастрофы: современный взгляд| Возражение второе

mybiblioteka.su - 2015-2024 год. (0.042 сек.)