Читайте также:
|
|
Так называются уравнения вида . Запишем производную в виде отношения дифференциалов: и разнесем в разные части выражения, содержащие и . Мы получим равенство двух дифференциалов: . После интегрирования правой части по , а левой – по мы получим слева функцию, зависящую от , а справа – функцию, зависящую от , отличающихся на константу: .
П р и м е р. В соответствии с законом радиоактивного распада вещества скорость распада пропорциональна количеству нераспавшегося вещества. Если обозначить массу нераспавшегося вещества в момент , то этот закон можно записать в виде соотношения: . Знак минус указывает на то, что масса вещества убывает с ростом .
Решение. Разделим переменные: . После интегрирования получим . Здесь произвольное постоянное слагаемое мы представили в виде логарифма положительной постоянной величины для удобства последующего потенцирования: .
Проанализируем полученное решение. Оно содержит постоянные (эта постоянная зависит от вида радиоактивного вещества – стронций, радий, уран….) и – постоянную интегрирования. Предположим, что мы исследуем радиоактивный распад радия, для которого , если измерять время в годах. Решение уравнения распада имеет
вид , и мы получаем множество решений вследствие присутствия произвольной положительной константы .
Как выбрать единственное? В данном случае, чтобы узнать, какое количество радиоактивного вещества останется по прошествии определенного времени, необходимо знать, сколько его было в начальный момент. Задавая , мы задаем значение . Таким образом, чтобы решать конкретные задачи, процессы в которых описываются дифференциальными уравнениями, необходимо не только само уравнение, но и дополнительные данные, количество которых определяется порядком дифференциального уравнения. Для решения задачи, поставленной для дифференциального уравнения первого порядка, необходимо задать начальное условие . Уравнение вкупе с начальным условием называется задачей Коши.
Дата добавления: 2015-07-08; просмотров: 227 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Пример составления дифференциального уравнения | | | Однородное дифференциальное уравнение первого порядка |