Читайте также:
|
|
Определим активное сопротивление кабеля при температуре 65 ºC. По Приложению 7 активное сопротивление медного кабеля 50 мм2 при температуре +20 ºC равно 0,37 Ом/км. При температуре 65 ºC сопротивление будет 0,37· [1 + 0,004· (65 – 20)] = 0,4366 Ом/км.
Полное активное сопротивление rx = 0,4366·5 = 2,185 Ом.
Сопротивление системы xc = 6600/ ·10000 = 0,3815 Ом.
Сопротивление кабеля хк = 0,083·5 = 0,415 Ом.
Ток трехфазного КЗ в конце кабеля в первый момент
= 6600/ · = 6600/ ·2,32 = 1644,41 А
Расчет для времени t = 1 c:
∆ = (I(3)/q)2·t = (1644,41/50)2·1 = 1081,6 А2 c/мм4,
a = (2,13/2,32)2 = 0,884.
На диаграмме рис. 10 по шкале абсцисс для меди откладываем величину ∆ = 1,08·104 и из этой точки восстанавливаем перпендикуляр до пересечения с кривой a. На диаграмме нет кривой для a = 0,88. Поэтому точка пересечения определяется как промежуточная между кривыми для a = 1 и a = 0,8. Точка пересечения, перенесенная на ось ординат, дает ne = 0,87 и ток 0,87·1644,1 = 1430,7 А.
Рис. 10. Диаграмма для определения снижения
тока КЗ от нагрева проводов
Температура кабеля определяется для этой же точки как промежуточная между кривыми для e = 120 ºС и 140 ºC, примерно 130 ºC.
Для времени t = 2 c Δ = (1644,1/50)2·2 = 2162,3 А2 с/мм4.
Аналогичным построением определяются ne = 0,78, ток 1282,4 А и температура 180 ºC.
Для времени t = 3 с Δ = (1644,1/50)2·3 = 3243,4 А2 с/мм4;
аналогичным построением определяются n = 0,72, ток 0,72·1644,1 = 1183,7 А и температура 225 °С.
Как пример практического применения подобных расчетов рассмотрим схему на рис. 11. Кабель медный 3х50 мм2 при напряжении 6 кВ допускает длительную нагрузку 200 А. Ток срабатывания защиты должен не менее чем в 4 раза превышать ток нагрузки, т. е. должно быть не менее 800 А, отстраиваться от токов самозапуска электродвигателей и обеспечивать чувствительность при резервировании не менее 1,2. Следовательно, ток срабатывания защиты 1·(0,866·1650)/1,2 = 1186 А с кратностью к току нагрузки 1200/200 = 6 вполне реален. Реальна и выдержка времени 3 с и более для зависимых защит при расчетной кратности тока 1644,1/1200 = 1,37 и любых уставках по времени в независимой части. Расчет показывает, что кабель 3х50 мм2 через 3 с нагреется до 225 °С при допустимых 200 °С. Это не противоречит условиям выбора выдержки времени защиты 1 по термической стойкости кабеля, так как ее время действия при КЗ в конце первого участка кабеля будет значительно меньше и кабель будет термически стоек. В данном случае при отказе защиты или выключателя 2 защита, установленная на выключателе 1, также может отказать, так как ее ток возврата 0,9·1186 = 1067 А, и при спадании тока двухфазного КЗ до 0,866·1183,7 = 1025,1 А защита может вернуться, не отключив КЗ.
Рис. 11. Схема сети к примеру 8
Отсюда следует важный вывод: при больших выдержках времени резервных защит необходимо проверять чувствительность защит с учетом нагрева проводов током КЗ.
Для трансформаторов рассчитать уменьшение тока по изложенной методике нельзя – неизвестно сечение провода обмоток, к тому же обмотки высшего и низшего напряжения имеют разные сечения и часто выбираются не по плотности тока, а по конструктивным соображениям. Но оценить уменьшение тока от нагрева можно по данным [2], который нормирует предельную температуру обмоток при КЗ для масляных трансформаторов с медными обмотками и изоляцией класса А 250 ºС и для алюминиевых обмоток 200 °С.
Потери короткого замыкания, по которым вычисляется активное сопротивление трансформаторов, даются для температуры обмоток 75 ºС. Следовательно, увеличение сопротивления обмоток можно определить: r250 = = r75[1 + 0,004(250 – 75)] = 1,7r75. Зная r250 и, считая неизменным Хт, можно определить Zт и по нему ток КЗ. Следует учитывать, что указанной температуры обмотки достигают за время прохождения тока КЗ tк. Допустимое по термической стойкости время tк определяется по выражению, приведенному в [2]: tк = 900/k2, где k – кратность тока КЗ по отношению к номинальному току. Поскольку сопротивление энергосистемы невелико по сравнению с сопротивлением трансформатора, им практически можно пренебречь. Путем преобразований выражение, рекомендуемое [2], приводится к более удобному виду:
tк = 900/k2 = 900 Iн2/(Iн·100/Uк)2 = 0,09Uк2; tк = 900/k2 = 0,09Uк2. (33)
Для большинства трансформаторов распределительных сетей
Uк = 4,5 % и tк = 0,09·4,52 = 1,82 с.
Пример 9. Определить уменьшение тока КЗ из-за нагрева обмоток трансформатора примера 5.
Дата добавления: 2015-07-08; просмотров: 171 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Решение | | | Решение |