Читайте также:
|
|
Формирование квантовой механики как последовательной теории с конкретными физическими основами во многом связано с работой
В.Гейзенберга, в которой было сформулировано соотношение (принцип) неопределенностей. Это фундаментальное положение квантовой механики раскрывает физический смысл ее уравнений, а также определяет ее связь с классической механикой.
Принцип неопределенности постулирует: объект микромира не может находиться в состояниях, в которых координаты его центра инерции и импульс одновременно принимают вполне определенные, точные значения.
Количественно этот принцип формулируется следующим образом. Если ∆x – неопределенность значения координаты x, а ∆p - неопределенность импульса, то произведение этих неопределенностей по порядку величины не может быть меньше постоянной Планка:
∆x∆p ≥ h.
Из принципа неопределенности следует, что, чем точнее определена одна из входящих в неравенство величин, тем с меньшей точностью определено значение другой. Никаким экспериментом невозможно одновременно точно измерить эти динамические переменные, причем это связано не с воздействием измерительных приборов или их несовершенством. Соотношение неопределенностей отражает объективные свойства микромира, проистекая из его корпускулярно-волнового дуализма.
То обстоятельство, что один и тот же объект проявляет себя и как частица, и как волна разрушает традиционные представления, лишает описание процессов привычной наглядности. Понятие частицы подразумевает объект, заключенный в малую область пространства, волна же распространяется в его протяженных областях. Представить себе объект, обладающий одновременно этими качествами невозможно, да и не следует пытаться. Невозможно построить наглядную для человеческого мышления модель, которая была бы адекватна микромиру. Уравнения квантовой механики, впрочем, и не ставят такой цели. Их смысл состоит в математически адекватном описании свойств объектов микромира и происходящих с ними процессов.
Если говорить о связи квантовой механики с механикой классической, то соотношение неопределенностей является квантовым ограничением применимости классической механики к объектам микромира. Строго говоря, соотношение неопределенностей распространяется на любую физическую систему, однако, поскольку волновая природа макрообъектов практически не проявляется, координаты и импульс таких объектов можно одновременно измерить с достаточно высокой точностью. Это означает, что для описания их движения вполне достаточно использовать законы классической механики. Вспомним, что аналогичным образом обстоит дело в релятивистской механике (специальной теории относительности): при скоростях движения, значительно меньших скорости света, релятивистские поправки становятся несущественными и преобразования Лоренца переходят в преобразования Галилея.
Итак, соотношение неопределенностей для координат и импульса отражает корпускулярно-волновой дуализм микромира и не связано с воздействием измерительных приборов. Несколько другой смысл имеет аналогичное соотношение неопределенностей для энергии Е и
времени t:
∆ E ∆ t ≥ h.
Из него следует, что энергию системы можно измерить лишь с точностью, не превышающей h /∆ t, где ∆ t – длительность измерения. Причина такой неопределенности состоит уже в самом процессе взаимодей ствия системы (микрообъекта) с измерительным прибором. Для стационарной ситуации приведенное неравенство означает, что энергия взаимодействия между измерительным прибором и системой может быть учтена только с точностью до h /∆t. В предельном же случае мгновенного измерения происходящий обмен энергией оказывается полностью неопределенным.
Если под ∆ Е понимается неопределенность значения энергии нестационарного состояния, то тогда ∆ t есть характерное время, в течение которого значения физических величин в системе изменяются существенным образом. Отсюда, в частности, следует важный вывод относительно возбужденных состояний атомов и других микросистем: энергия возбужденного уровня не может быть строго определена, что говорит о наличии естественной ширины этого уровня.
Объективные свойства квантовых систем отражает еще одно принципиальное положение квантовой механики – принцип дополнительности Бора, согласно которому получение любым экспериментальным путем информации об одних физических величинах, описывающих микрообъект, неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым.
Взаимно дополнительными являются, в частности, координата частицы и ее импульс (см. выше – принцип неопределенности), кинетическая и потенциальная энергия, напряженность электрического поля и количество фотонов.
Рассмотренные фундаментальные принципы квантовой механики свидетельствуют о том, что, в силу корпускулярно-волнового дуализма изучаемого ею микромира, ей чужд детерминизм классической физики. Полный уход от наглядного моделирования процессов придает особый интерес вопросу о том, какова же физическая природа волн де Бройля. В ответе на этот вопрос принято «отталкиваться» от поведения фотонов. Известно, что при пропускании светового пучка через полупрозрачную пластину S часть света проходит сквозь нее, а часть отражается (рис. 4).
Рис. 4
Что же при этом происходит с отдельными фотонами? Эксперименты со световыми пучками очень малой интенсивности с использованием современной техники (А – детектор фотонов), позволяющей следить за поведением каждого фотона (так называемый режим счета фотонов), показывают, что о расщеплении отдельного фотона не может быть и речи (иначе свет изменял бы свою частоту). Достоверно установлено, что некоторые фотоны проходят сквозь пластину, а некоторые отражаются от нее. Это означает, что одинаковые частицы в одинаковых условиях могут вести себя по-разному, т. е. поведение отдельного фотона при встрече с поверхностью пластины не может быть предсказано однозначно.
Отражение фотона от пластины или прохождение сквозь нее суть случайные события. А количественные закономерности таких событий описываются с помощью теории вероятностей. Фотон может с вероятностью w 1 пройти сквозь пластину и с вероятностью w 2 отразиться от нее. Вероятность того, что с фотоном произойдет одно из этих двух альтернативных событий, равна сумме вероятностей: w 1 + w 2 = 1.
Аналогичные эксперименты с пучком электронов или других микрочастиц также показывают вероятностный характер поведения отдельных частиц. Таким образом, задачу квантовой механики можно сформулировать как предсказание вероятности процессов в микромире, в отличие от задачи классической механики – предсказывать достоверность событий в макромире.
Известно, однако, что вероятностное описание применяется и в классической статистической физике. Так в чем же принципиальная разница? Для ответа на этот вопрос усложним опыт по отражению света. С помощью зеркала S2 развернем отраженный пучок, поместив детектор A, регистрирующий фотоны в зоне его пресечения с прошедшим пучком, т. е. обеспечим условия интерференционного эксперимента (рис. 5).
Рис. 5
В результате интерференции интенсивность света в зависимости от расположения зеркала и детектора будет периодически меняться по поперечному сечению области перекрытия пучков в широких пределах (в том числе обращаться в ноль). Как же ведут себя отдельные фотоны в этом опыте? Оказывается, что в этом случае два оптических пути к детектору уже не являются альтернативными (взаимоисключающими) и поэтому нельзя сказать, каким путем прошел фотон от источника к детектору. Приходится допускать, что он мог попасть в детектор одновременно двумя путями, образуя в итоге интерференционную картину. Опыт с другими микрочастицами дает аналогичный результат: последовательно проходящие частицы создают такую же картину, как и поток фотонов.
Вот это уже кардинальное отличие от классических представлений: ведь невозможно представить себе движение частицы одновременно по двум разным путям. Впрочем, такой задачи квантовая механика и не ставит. Она предсказывает результат, состоящий в том, что светлым полосам соответствует высокая вероятность появления фотона.
Волновая оптика легко объясняет результат интерференционного опыта с помощью принципа суперпозиции, в соответствии с которым световые волны складываются с учетом соотношения их фаз. Иными словами, волны вначале складываются по амплитуде с учетом разности фаз, образуется периодическое распределение амплитуды, а затем уже детектор регистрирует соответствующую интенсивность (что соответствует математической операции возведения в квадрат по модулю, т. е. происходит потеря информации о распределении фазы). При этом распределение интенсивности носит периодический характер:
I = I 1 + I 2 + 2 A 1 A 2 cos (φ 1 – φ2),
где А, φ, I = | A |2 – амплитуда, фаза и интенсивность волн соответственно, а индексы 1, 2 указывают на их принадлежность к первой или второй из этих волн. Ясно, что при А 1 = А 2 и cos (φ1 – φ2) = – 1 значение интенсивности I = 0, что соответствует взаимному гашению световых волн (при их суперпозиции и взаимодействии по амплитуде).
Для интерпретации волновых явлений с корпускулярной точки зрения принцип суперпозиции переносится в квантовую механику, т. е. вводится понятие амплитуды вероятности – по аналогии с оптическими волнами: Ψ = А exp (iφ). При этом имеется в виду, что вероятность есть квадрат этой величины (по модулю) т. е. W= |Ψ|2. Амплитуда вероятности называется в квантовой механике волновой функцией. Это понятие ввел в 1926 г. немецкий физик М. Борн, дав тем самым вероятностную интерпретацию волн де Бройля. Удовлетворение принципу суперпозиции означает, что если Ψ1 и Ψ2 – амплитуды вероятности прохождения частицы первым и вторым путями, то амплитуда вероятности при прохождении обоих путей должна быть: Ψ = Ψ1 + Ψ2. Тогда формально утверждение о том, что «частица прошла двумя путями», приобретает волновой смысл, а вероятность W= | Ψ1 + Ψ2 | 2 проявляет свойство интерференционного распределения.
Таким образом, величиной, описывающей состояние физической системы в квантовой механике, является волновая функция системы в предположении о справедливости принципа суперпозиции. Относительно волновой функции и записано основное уравнение волновой механики – уравнение Шрёдингера. Поэтому одна из основных задач квантовой механики состоит в нахождении волновой функции, отвечающей данному состоянию исследуемой системы.
Существенно, что описание состояния частицы с помощью волновой функции носит вероятностный характер, поскольку квадрат модуля волновой функции определяет вероятность нахождения частицы в данный момент времени в определенном ограниченном объеме. Этим квантовая теория фундаментально отличается от классической физики с ее детерминизмом.
В свое время именно высокой точности предсказания поведения макрообъектов была обязана своим триумфальным шествием классическая механика. Естественно, в среде ученых долгое время бытовало мнение, что прогресс физики и науки вообще будет неотъемлемо связан с возрастанием точности и достоверности такого рода предсказаний. Принцип неопределенности и вероятностный характер описания микросистем в квантовой механике коренным образом изменили эту точку зрения.
Тогда стали появляться другие крайности. Поскольку из принципа неопределенности следует невозможность одновременного определения координаты и импульса, можно сделать вывод о том, что состояние системы в начальный момент времени точно не определено и, следовательно, не могут быть предсказаны последующие состояния, т. е. нарушается принцип причинности.
Однако подобное утверждение возможно только при классическом взгляде на неклассическую реальность. В квантовой механике состояние частицы полностью определяется волновой функцией. Ее значение, заданное для определенного момента времени, определяет последующие ее значения. Поскольку причинность выступает как одно из проявлений детерминизма, целесообразно в случае квантовой механики говорить о вероятностном детерминизме, опирающемся на статистические законы, т. е. обеспечивающем тем более высокую точность, чем больше зафиксировано однотипных событий. Поэтому современная концепция детерминизма предполагает органическое сочетание, диалектическое единство необходимости и случайности.
Развитие квантовой механики оказало, таким образом, заметное влияние на прогресс философской мысли. С гносеологической точки зрения особый интерес представляет уже упоминавшийся принцип соответствия, сформулированный Н. Бором в 1923 г., согласно которому всякая новая, более общая теория, являющаяся развитием классической, не отвергает ее полностью, а включает в себя классическую теорию, указывая границы ее применимости и переходя в нее в определенных предельных случаях.
Нетрудно убедиться, что принцип соответствия прекрасно иллюстрирует взаимоотношение классической механики и электродинамики с теорией относительности и квантовой механикой.
Дата добавления: 2015-07-08; просмотров: 163 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Концепция квантовой механики | | | Строение атомного ядра |