Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Требования к уровню освоения содержания дисциплины

Читайте также:
  1. II. CОДЕРЖАНИЕ ДИСЦИПЛИНЫ
  2. II. Методические указания по изучению дисциплины
  3. II. Общие требования к оформлению ВКР
  4. II. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ (в часах)
  5. II. РАБОЧАЯ УЧЕБНАЯ ПРОГРАММА ДИСЦИПЛИНЫ
  6. II. Распределение бюджета времени (в часах) при изучении дисциплины 3 курс, 1 семестр.
  7. II. ТРЕБОВАНИЯ К МЕСТУ ДЛЯ РАЗБИВКИ ЛАГЕРЯ

В результате изучения дисциплины студент должен обладать следующими компетенциями:

-способен использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применяет методы математического анализа и моделирования, теоретического и экспериментального исследования (ОК-10);

-способен собирать и анализировать исходные информационные данные для проектирования технологических процессов изготовления продукции, средств и систем автоматизации, контроля, технологического оснащения, диагностики, испытаний, управления процессами, жизненным циклом продукции и ее качеством (ПК-1);

-способен выбирать основные и вспомогательные материалы для изготовления изделий, способы реализации основных технологических процессов, аналитические и численные методы при разработке их математических моделей (ПК-3);

-способен использовать прикладные программные средства при решении практических задач профессиональной деятельности, методы стандартных испытаний по определению физико-механических свойств и технологических показателей материалов и готовых изделий, стандартные методы их проектирования, прогрессивные методы эксплуатации изделий (ПК-4);

-способен участвовать в разработке обобщенных вариантов решения проблем, связанных с автоматизацией производств, выборе на основе анализа вариантов оптимального, прогнозировании последствий решения (ПК-7);

-способен выбирать средства автоматизации технологических процессов и производств (ПК-11);

-способен проводить диагностику состояния и динамики производственных объектов производств с использованием необходимых методов и средств анализа (ПК-16);

-способен участвовать в разработке математических и физических моделей процессов и производственных объектов (ПК-17);

-способен выполнять работы по расчету и проектированию средств и систем автоматизации, контроля, диагностики, испытаний, управления процессами, жизненным циклом продукции и ее качеством в соответствии с техническими заданиями и использованием стандартных средств автоматизации расчетов и проектирования (ПК-18);

-способен участвовать в разработке проектов по автоматизации производственных и технологических процессов, технических средств и систем автоматизации, контроля, диагностики, испытаний, управления процессами, жизненным циклом продукции и ее качеством (ПК-19);

-способен разрабатывать локальные поверочные схемы и выполнять проверку и отладку систем и средств автоматизации технологических процессов, контроля, диагностики, испытаний, управления процессами, жизненным циклом продукции и ее качеством, а также их ремонт (ПК-23);

-способен к участию в работах по моделированию продукции, технологических процессов, производств, средств и систем автоматизации, контроля, диагностики, испытаний и управления процессами, жизненным циклом продукции и ее качеством с использованием современных средств автоматизированного проектирования (ПК-40);

-способен участвовать в разработке алгоритмического и программного обеспечения средств и систем автоматизации и управления процессами (ПК-41);

В результате изучения дисциплин студент должен:

знать:

- методологические основы функционирования, моделирования и синтеза систем

автоматического управления (САУ); основные методы анализа САУ во временной и частотных областях, способы синтеза САУ: типовые пакеты прикладных программ анализа динамических систем;

- управляемые выходные переменные, управляющие и регулирующие воздействия,

статические и динамические свойства технологических объектов управления;

уметь:

- строить математические модели объектов управления и систем автоматического

управления (САУ);

- проводить анализ САУ, оценивать статистические и динамические характеристики;

- рассчитывать основные качественные показатели САУ, выполнять анализ ее

устойчивости, синтез регулятора;

- составлять структурные схемы производств, их математические модели как

объектов управления, определять критерии качества функционирования и цели

управления;

- рассчитывать одноконтурные и многоконтурные системы автоматического регулирования применительно к конкретному технологическому объекту;

владеть:

- навыками построения систем автоматического управления системами и процессами;

- навыками анализа технологических процессов, как объекта управления и выбора

функциональных схем их автоматизации;

Содержание дисциплины.

Основные понятия теории управления; классификация систем управления (СУ); поведение объектов и СУ; информация и принципы управления; примеры СУ техническими, экономическими и организационными объектами;

Задачи теории управления; линейные непрерывные модели и характеристики СУ; модели вход-выход: дифференциальные уравнения, передаточные функции, временные и частотные характеристики; модели вход-состояние-выход; преобразования форм представления моделей.

Анализ основных свойств линейных СУ: устойчивости, инвариантности, чувствительности, управляемости и наблюдаемости; качество переходных процессов в линейных СУ.

Задачи и методы синтеза линейных СУ. Линейные дискретные модели СУ: основные понятия об импульсных СУ, классификация дискретных СУ; анализ и синтез дискретных СУ.

Оптимальные системы управления: задачи оптимального управления, критерии оптимальности; методы теории оптимального управления: классическое вариационное исчисление, принцип максимума, динамическое программирование; СУ оптимальные по быстродействию, оптимальные по расходу ресурсов и расходу энергии; аналитическое конструирование оптимальных регуляторов.

Нелинейные модели СУ; анализ равновесных режимов; методы линеаризации нелинейных моделей; анализ поведения СУ на фазовой плоскости; устойчивость положений равновесия: первый и второй методы Ляпунова, частотный метод исследования абсолютной устойчивости; исследование периодических режимов методом гармоническогобаланса.

Линейные стохастические модели СУ; модели и характеристики случайных сигналов; прохождение случайных сигналов через линейные звенья; анализ и синтез линейных стохастических систем при стационарных случайных воздействиях. Робастные системы и адаптивное управление.

 

Б.3. Профессиональный цикл

Аннотация учебной дисциплины «Инженерная и компьютерная графика»


Дата добавления: 2015-07-10; просмотров: 86 | Нарушение авторских прав


Читайте в этой же книге: Требования к уровню освоения содержания дисциплины | Цели и задачи дисциплины. | Цели и задачи дисциплины | Требования к уровню освоения содержания дисциплины | Требования к уровню освоения содержания дисциплины | Требования к уровню освоения содержания дисциплины | Цель и задачи дисциплины | Цель и задачи дисциплины | Цель и задачи дисциплины | Требования к уровню освоения содержания дисциплины |
<== предыдущая страница | следующая страница ==>
Требования к уровню освоения содержания дисциплины| Требования к уровню освоения содержания дисциплины

mybiblioteka.su - 2015-2025 год. (0.007 сек.)