Читайте также: |
|
Слуховой анализатор предназначен для восприятия периодических сгущений и раздражений воздушной или другой среды, которые создаются источником колебаний.
До того, как достигнуть рецепторов, реагирующих на эти колебания, волны должны пройти целый ряд специализированных периферических приборов, называемых наружным и средним ухом.
Наружное ухо состоит из ушной раковины, наружного слухового прохода, который перегораживается барабанной перепонкой от среднего уха.
Наружный слуховой проход играет роль резонатора, имеющего собственную частоту колебаний, равную 3000 Гц. Если на ухо действуют звуковые колебания, близкие по своим частотным характеристикам к собственной резонаторной частоте наружного уха, то давление на барабанную перепонку усиливается. Благодаря эластичности барабанной перепонки происходит гашение увеличенного давления, которое у барабанной перепонки возрастает всего на 10 дБ по сравнению с давлением у входа в слуховой проход. В слуховом проходе и вблизи барабанной перепонки температура и влажность остаются постоянными независимо от изменений этих показателей в окружающей среде, что особенно необходимо для сохранения упругих свойств барабанной перепонки.
Барабанная перепонка. Барабанная перепонка - это малоподатливая и слаборастяжимая мембрана. При действии на ухо звуков низкой частоты размах колебаний самой перепонки находится в пределах от 10-2 до 10--9 см. Если частота воспринимаемых звуковых сигналов совпадает с частотой ее собственных колебаний, размахи колебаний барабанной перепонки могут быть значительными. Однако это явление благодаря прочному соединению барабанной перепонки с системой слуховых косточек, играющих роль гасителя ее собственных колебаний, хотя не всегда собственные колебания барабанной перепонки могут гаситься за счет слуховых косточек.
Среднее ухо содержит цепь соединенных между собой косточек: молоточка, наковальни и стремечка. Стремечко является самой легкой косточкой во всем организме человека. Рукоятка молоточка прикреплена к барабанной перепонке, основание стремечка - к овальному окну. Слуховые косточки образуют систему рычагов, делающих более эффективной передачу звуковых колебаний из воздушного пространства наружного слухового прохода в жидкую среду внутреннего уха.
Известно, что размеры воспринимающей поверхности барабанной перепонки (75 мм2) значительно.преобладают над площадью овального окна. Таким образом, специальная система рычагов, созданная сочленением слуховых косточек, а также различия в размерах эффективной поверхности мембраны овального окна и барабанной перепонки создают условия для роста давления, прилагаемого к овальному окну, которое примерно в 20 раз больше давления, действующего на барабанную перепонку.
Среднее ухо содержит специальный механизм, состоящий из двух мышц: m. tensor tympani и т. stapedins. Первая прикреплена к рукоятке молоточка, другая - к стремечку. Обе мышцы предохраняют внутреннее ухо от повреждений, которые могли бы возникнуть при действии чрезмерно сильных звуковых раздражителей. Рефлекторное сокращение этих мышц при действии очень сильных звуков уменьшает амплитуду колебательных движений слуховых косточек и барабанной перепонки, что приводит к уменьшению звукового давления на область овального окна и предотвращает патологические изменения в кортиевом органе.
Давление воздушного пространства в полости среднего уха близко к атмосферному, что служит необходимым условием для нормальных колебаний барабанной перепонки. Уравниванию давления способствует евстахиева труба, которая соединяет носоглотку с полостью среднего уха. Уравнивание давления в полости среднего уха происходит во время акта глотания, когда стенки евстахиевой трубы расходятся и атмосферный воздух попадает в барабанную полость. Это особенно важно и в случае с резким перепадом давления (при подъеме или спуске на самолете, в скоростном лифте).
Внутреннее ухо соединено со средним с помощью овального окна, в котором неподвижно укреплена подножная пластинка стремечка. Внутреннее ухо содержит рецепторный аппарат двух анализаторов: вестибулярного (преддверие и полукружные каналы) и слухового, к которому относится улитка с кортиевым органом. В этом разделе будут рассмотрены лишь строение и функция улитки, содержащей звуковоспринимающий рецепторный аппарат.
Длина улитки около 35 мм, что составляет 2,5 завитка. Костный канал улитки разделен двумя мембранами: рейснеровой, или базилярной, на три канала, или лестницы. Верхний канал носит название scala vestibuli, нижний - scala tympani. Между ними расположена scala media, или улиточный ход. У верхушки улитки верхний и нижний каналы связаны между собой с помощью геликотремы. Единый канал, включающий в себя овальное окно, верхнюю и нижнюю лестницы, соединенные геликотремой, заканчивается круглым окном. Верхний и нижний каналы улитки заполнены перилимфой, а средний - эндолимфой. Перилимфа напоминает плазму крови и цереброспинальную жидкость, в которой преобладает содержание ионов натрия. Эндолимфа отличается от перилимфы высоким содержанием ионов калия, приближаясь по химическому составу к внутриклеточной жидкости.
Основная мембрана состоит из эластических волокон, слабо натянутых между костным спиральным гребешком и наружной стенкой улитки, что создает условия для колебательных движений волокон базилярной мембраны. На основной мембране в средней лестнице расположен звуковоспринимающий рецепторный аппарат - кортиев орган. Кортиев орган состоит из четырех рядов волосковых клеток. Поверх волосков, или волосковых клеток, омываемых эндолимфой, лежит, соприкасаясь с ними, покровная, или текториальная мембрана.
Проведение звуковых колебаний в улитке. Звуковая волна, воздействуя на систему слуховых косточек среднего уха, приводит в колебательное движение мембрану овального окна, которая, прогибаясь, вызывает волнообразные перемещения перилимфы верхнего и нижнего каналов, они постепенно затухают по направлению к вершине улитки. Колебания перилимфы передаются на вестибулярную мембрану, а также на полость среднего канала, приводя в движение эндолимфу и базилярную мембрану. Установлено, что при действии на ухо звуков низкой частоты (до 1000 Гц) происходит смещение базилярной мембраны на всем ее протяжении от основания до верхушки улитки. При увеличении частоты звукового сигнала происходит перемещение укороченного по длине колеблющегося столба жидкости ближе к овальному окну и наиболее жесткому и упругому участку базилярной мембраны. Деформируясь, базилярная мембрана смещает волоски волосковых клеток относительно текториальной мембраны. В результате такого смещения возникает электрический разряд волосковых клеток. Существует прямая зависимость между амплитудой смещения основной мембраны и количеством вовлекаемых в процесс возбуждения нейронов слуховой коры. Электрофизиологические исследования показали, что средний канал улитки имеет положительный заряд относительно верхнего и нижнего каналов. Это - эндокохлеарный потенциал улитки. Он обусловлен определенным уровнем окислительно-восстановительных процессов в каналах улитки. Разрушение сосудистой оболочки и гипоксия приводят к его исчезновению. Эндокохлеарный потенциал создает критический уровень поляризации волосковых клеток, поэтому незначительное механическое воздействие приводит к возникновению возбуждения в волосковых клетках. В этом, видимо, и состоит основное функциональное значение. Различают три вида электрических реакций во внутреннем ухе: 1) микрофонный эффект, 2) суммационный потенциал, 3) потенциал действия слухового нерва.
Впервые микрофонный эффект улитки был получен Е. Уивером и С. Бреем в 1930 г. В эксперименте на кошках было показано, что если в улитку ввести электроды, соединенные с усилителем и громкоговорителем, расположенным в другом помещении, а затем на ухо кошке произносить различные слова, то экспериментатор, находясь у громкоговорителя в другом помещении, может услышать эти же слова. Микрофонный эффект улитки возникает в ответ на смещение текториальной мембраны относительно волосковых клеток, по форме и частоте напоминая форму звуковых колебаний. Происхождение микрофонного эффекта связывают с механохимическими преобразованиями в волосковых клетках кортиева органа, повреждение которого приводит к исчезновению микрофонного эффекта. Высокоамплитудные потенциалы отводят от той части улитки, резонансная частота которой одинакова с частотой действующих на ухо звуковых колебаний. Микрофонный потенциал регистрируется еще некоторое время после смерти животного, но его частотные и амплитудные характеристики убывают.
Местом возникновения микрофонного потенциала является область корешков волосков волосковых клеток. Звуковые колебания, действующие на внутреннее ухо, накладывают возникающий микрофонный эффект на эндокохлеарный потенциал, вызывая его модуляцию.
Суммарный потенциал отличается от микрофонного потенциала тем, что отражает не форму звуковой волны, а ее огибающую и возникает при действии на ухо высокочастотных звуков.
Потенциал действия слухового нерва генерируется в результате электрического возбуждения, возникающего в волосковых клетках.
Электронно-микроскопические исследования показали наличие синаптических контактов между волосковыми клетками и нервными окончаниями. Предполагают химический способ возбуждения с волосковых клеток на волокна слухового нерва. Потенциал действия в нервных окончаниях регистрируется через 0,5-1,0 мс после возникновения микрофонного эффекта, что также говорит в пользу синаптической передачи возбуждения.
Восприятие звука различной частоты. В настоящее время распространена "теория места". Предполагают, что волосковые клетки, расположенные на базилярной мембране в различных участках улитки, обладают разной лабильностью, что оказывает влияние на восприятие звуков высокой и низкой частоты, (настройку волосковых клеток на звуки различной частоты).
Проводящие пути и центры слухового анализатора. Нейроны первого порядка слухового пути входят в состав спирального ганглия улитки. Центральные отростки клеток спирального ганглия образуют слуховой, или кохлеарный, нерв. Периферические отростки этих же клеток идут по направлению к кортиеву органу. Кохлеарный нерв, являясь ветвью VIII пары черепно-мозговых нервов, проходит в продолговатый мозг и заканчивается на клетках кохлеарных ядер нейронами второго порядка. Все три ядра составляют так называемый кохлеарный комплекс. Улитка представлена в ядрах кохлеарного комплекса таким образом, что волокна, идущие от верхушки улитки, оканчиваются в вентролатеральном отделе комплекса; идущие от основания улитки - в его дорсомедиальных частях. От нейронов кохлеарного комплекса начинается восходящий слуховой путь, который делится на ипси - и, более мощный, контралатеральный пучок волокон.
Контралатеральные волокна оканчиваются на клетках верхней оливы. Аксоны нейронов верхней оливы вместе с непереключенными волокнами проходят в составе латеральной петли. Одна часть волокна латеральной петли достигает ядер нижних бугров четверохолмия, в которых представлены нейроны III, IV, V порядков. Другая часть волокон латеральной петли проходит, не переключаясь, во внутреннее коленчатое тело зрительного бугра данной стороны, которое является последним переключательным звеном восходящего слухового пути. От внутренних, или медиальных, коленчатых тел волокна достигают клеток слуховой коры, заканчиваясь в верхней части височной доли мозга (поля 41 и 42 по Бродману).
Нисходящие пути слухового анализатора начинаются, от клеток слуховой коры, переключаясь последовательно в медиальных коленчатых телах зрительного бугра, задних буграх четверохолмия, верхнеоливарном комплексе. Затем входят в кохлеарный нерв, достигая волосковых клеток кортиева органа.
Дата добавления: 2015-07-10; просмотров: 106 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
БОЛЬ. НОЦИЦЕПТИВНЫЙ АНАЛИЗАТОР | | | Переработка информации в центрах |