Читайте также:
|
|
Дифференциальное уравнение записывается таким образом, чтобы выходная величина и все ее производные находились бы в левой части уравнения, а входные воздействия (управляющее воздействие или возмущение) – в правой части. При этом нулевая производная выходной величины (сама величина) должна входить в уравнение с коэффициентом, равным единице. В этом случае исходное дифференциальное уравнение
запишется в виде (обе части уравнения поделены на коэффициент )
где
Ti – имеют размерность времени в соответствующей степени и называются постоянными времени, ki – могут иметь различную размерность и называются коэффициентом преобразования (передачи, усиления).
Дифференциальное уравнение часто записывается в операторном виде с использованием алгебраизированного оператора дифференцирования
.
Формально из уравнения в операторном виде можно получить выражение для выходной величины (при условном рассмотрении оператора дифференцирования p в качестве алгебраической величины)
или
,
где W(p) – оператор системы (символическая запись дифференциального уравнения системы). В дальнейшем мы уточним значение полученного выражения.
Дата добавления: 2015-09-02; просмотров: 62 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Уравнения системы | | | Преобразование Лапласа |