Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Решение нормальных уравнений способом обращения

Обозначим | Нормальные уравнения | Блок-схема параметрического способа уравнивания | Уравнивание нивелирной сети параметрическим способом | Оценку точности параметров и функции параметров выполним с использованием элементов обратной матрицы | Уравнивание углов на станции параметрическим способом | Систему нормальных уравнений решим методом обращения | Оценим точность результатов измерений. |


Читайте также:
  1. Antrag auf Erteilung einer Aufenthaltserlaubnis - Анкета для лиц, желающих получить разрешение на пребывание (визу)
  2. II Разрешение космологической идеи о целокупности деления данного целого в созерцании
  3. II. Отрицание не значит решение
  4. IV Разрешение космологической идеи о всеобщей зависимости явлений по их существованию вообще
  5. VI. Доминантсептаккорд и его обращения
  6. А вот это верное решение! И правда! — заулыбался он. — Что-то я совсем растерялся от всего произошедшего! Если талисман не закрывать, они попросту не смогут к нам приблизиться!
  7. Авторитарная личность принимает решение не вместе с человеком, а вместо человека.

Умножив систему нормальных уравнений NttXt1 + Bt1 = 0 на обратную матрицу N-1

получают:

(34)

(35)

- решение нормальных уравнений способом обращения.

По определению обратной матрицы, N-1N = E. Это равенство используется для обоснования способа определения элементов обратной матрицы. Пусть t = 2.

Отсюда следует:

- 1-я система весовых нормальных уравнений.

- 2-я система весовых нормальных уравнений.

В общем случае в результате подобных действий получится t систем весовых нормальных уравнений по t уравнений в каждой системе. Эти системы имеют такую же матрицу коэффициентов, как и основная, с неизвестными δхj и отличаются от нее только столбцами свободных членов. В j-ом уравнении j-ой системы свободный член равен -1, остальные равны нулю. Системы весовых нормальных уравнений решают параллельно с основной системой, в общей схеме, с использованием дополнительных столбцов для свободных членов этих систем (табл. 9). Для контроля вычисленные значения элементов обратной матрицы Qij подставляют в суммарные уравнения, составленные для весовых систем. Например, для t = 2 эти уравнения будут иметь вид:

([paa] + [раb])Q11 + ([pab] + [pbb])Q12 - 1 = 0;

([paa] + [pab])Q21 + ([pаb] + [pbb]) Q22 - 1 = 0.

Для предварительного контроля служат равенства Qij = Qji (i ≠ j).

Элементы обратной матрицы Qij называют весовыми коэффициентами.

Таблица 9


Дата добавления: 2015-09-02; просмотров: 60 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Составление нормальных уравнений| Оценка точности по материалам уравнивания

mybiblioteka.su - 2015-2024 год. (0.007 сек.)