Читайте также:
|
|
Применим первую эвристику к формуле законa введения конъюнкции:
(pÉq)É(pÙq)).
Получим следующую схему вывода:
_______ ______________ | 1. p — пос. 2. q — пос. 3. p Ù q — Ùв, 1, 2. 4. q É (p Ù q) — Éв, 2, 3. 5. p É (q É (p Ù q)) — Éв, 1, 4. |
В данной схеме из числа исключающих посылки правил вывода имеется только правило введения импликации, что характеризует данный вывод в качестве прямого. Вывод, в котором при выборе посылок использовалась только первая эвристика (т. е. не применялось правило введения отрицания), называется прямым выводом.
В предыдущих же схемах доказательств имелось правило введения отрицания, что характеризует эти выводы в качестве косвенных (от противного) и свидетельствует об использовании второй эвристики. При этом фундаментальным является прямой вывод, и всё то, что обосновывается посредством прямого вывода, может быть обосновано и посредством вывода косвенного.
Вторая эвристика применяется после исчерпания возможностей первой, когда целью вывода не является импликативная формула; в таком случае в качестве дополнительной посылки берётся отрицание этой формулы, а целью вывода становится получение в ходе рассуждения противоречия. Если это удаётся сделать, то, применяя правило введения отрицания, можно получить в выводе формулу отрицания дополнительной посылки, а используя правило исключения отрицания, получить итоговую формулу.
Дата добавления: 2015-09-05; просмотров: 51 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
V Пример | | | Язык классической логики предикатов |