Читайте также:
|
|
Решим ГРАФИЧЕСКИМ СПОСОБОМ пример 3. Его удобно применять, когда в задаче 2 (реже 3) неизвестных. В этом случае сначала строим область допустимых решений и в результате получаем многоугольник (многогранник). Затем можно действовать двумя способами. Во-первых, можно найти значения целевой функции в каждой из вершин и выбрать наименьшее. Во-вторых, можно нарисовать линии уровня целевой функции (это будут параллельные прямые) и с помощью них определить нужную нам вершину.
или
Надо найти точку, в которой целевая функция имеет максимум. Для этого необходимо начертить график функции f = 0, т.е. 7х1 + 5х2 = 0 и сдвигать его параллельно в сторону увеличения функции f до тех пор, пока он все еще будет пересекать наш многоугольник (пересекаться с областью решений). Итак, самое оптимальное решение - точка (2;4), f = 340.
Дата добавления: 2015-08-27; просмотров: 55 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Постановка задачи. Графический метод | | | Двойственная задача |