Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Простейшая задача о рационе.

Метод Гаусса в Excel. | Модель Леонтьева межотраслевого баланса. | Решение. | Нахождения вектора валовой продукции в Excel. | Метод наименьших квадратов (МНК). | Анализ данных эксперимента | МНК в Excel. | Решение. |


Читайте также:
  1. Quot;Формирование Образа будущей России» - наша актуальная задача.
  2. Альтернативный оптимум в транспортных задачах
  3. В задачах інженерної механіки
  4. В общем виде задача линейного программирования ставится следующим образом.
  5. ВАША ЗАДАЧА ИХ РАЗГЛАДЕТЬ И, ГЛАВНОЕ, ВОСПОЛЬЗОВАТЬСЯ!
  6. Ваша задача — заставить подчиненных работать как можно лучше
  7. Винокур Г. О. О задачах истории языка // Звегинцев История языкознания XIX и ХХ вв. в очерках и извлечениях. Часть II. М., 1960

Введение

Данная работа посвящена решению задач линейной алгебры в Excel,точнее решению систем линейных уравнений. Будут рассмотрены три метода: метод Гаусса, метод, основанный на нахождении обратной матрицы и метод наименьших квадратов.

В первом параграфе работы в качестве примера использования систем линейных уравнений в экономике приведена простейшая задача о рационе и её решение методом Гаусса в частном случае, когда количество неизвестных совпадает с количеством уравнений.

Во втором параграфе рассматривается модель Леонтьева межотраслевого баланса. Это модель, позволяющая анализировать состояние экономики и моделировать различные сценарии ее развития. Возникающая в этом методе система линейных уравнений традиционно решается нахождением обратной матрицы. Чтобы пояснить, запишем модель Леонтьева в матричной форме:

(E-A)*X=Y

Если у нас имеется матрица (Е-А)-1 ,то умножая обе части равенства на эту матрицу, получим: Х=(Е-А)-1*У.

Третий параграф описывает решение задач, сводящихся к решению систем линейных уравнений, при помощи МНК (метода наименьших квадратов).

В каждом параграфе будет приведена реализация в Excel.

 

Метод Гаусса и одно из его приложений в экономике (задача о рационе).

Простейшая задача о рационе.

Формулировка задачи. Допустим, на ферме занимаются выращиванием телят. Известно, что для хорошего роста теленка в день ему необходимо потреблять m веществ в количестве ,…, соответственно.

На ферму ежедневно завозится n кормов в количестве ,…, . Известно, что доля итогового вещества в j -ом корме равна . Тогда общее количество вещества

определяется по формуле

=

(слагаемое - количество итогового вещества в j корме; i =1,…,n).

В результате получаем систему

(1)

Если m ≠ n,то система называется прямоугольной и методы её решения рассматриваются в другом параграфе. В данном случае будем считать, что m=n. Такая система является квадратной и к ней применим метод Гаусса.


Дата добавления: 2015-08-20; просмотров: 127 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
ОПИСАНИЕ УСЛУГ| Метод Гаусса.

mybiblioteka.su - 2015-2024 год. (0.008 сек.)