Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Модель Леонтьева межотраслевого баланса.

Простейшая задача о рационе. | Метод Гаусса. | Нахождения вектора валовой продукции в Excel. | Метод наименьших квадратов (МНК). | Анализ данных эксперимента | МНК в Excel. | Решение. |


Читайте также:
  1. ANCOVA-модель при наличии у фиктивной переменной двух альтернатив
  2. IV. Модель (ГБ).
  3. Архітектура мережі. Функціональна модель. Протокольна модель. Модель програмного забезпечення.
  4. Библейская модель обличения
  5. Детерміністична модель
  6. ЕАЭС как основа экономического процветания стран-участниц и привлекательная модель экономического развития.
  7. Еталонна модель взаємодії відкритих систем (Open System Interconnection, OSI), або скорочено – «модель OSI/ISO».

Макроэкономика функционирования многоотраслевого хозяйства требует баланса между отдельными отраслями. Каждая отрасль, с одной стороны, является производителем, а с другой — потребителем продукции, выпускаемой другими отраслями. Возникает довольно непростая задача расчета связи между отраслями через выпуск и потребление продукции разного вида. Впервые эта проблема была сформулирована в виде математической модели в 1936 г. в трудах известного американского экономиста В.В.Леонтьева, который попытался проанализировать причины экономической депрессии США 1929-1932 гг. Эта модель основана на алгебре матриц.

Суть сводится к следующему.

Основу информационного обеспечения модели межотраслевого баланса составляет технологическая матрица, содержащая коэффициенты прямых материальных затрат на производство единицы продукции. Эта матрица является также основой экономико-математической модели межотраслевого баланса. Предполагается, что производствао единицы продукции в j-й отрасли требует определенное количество затрат промежуточной продукции i-й отрасли, равное аij. Оно не зависит от объема производства в отрасли и является довольно стабильной величиной во времени. Величины аij называются коэффициентами прямых материальных затрат и рассчитываются следующим образом:

Коэффициент прямых материальных затрат показывает, какое количество продукции i-й отрасли необходимо, если учитывать только прямые затраты, для производства единицы продукции j-й отрасли.

Систему уравнений баланса можно переписать в виде

Если ввести в рассмотрение матрицу коэффициентов прямых материальных затрат А= (аij), вектор-столбец валовой продукции Xи вектор-столбец конечной продукции Y:

 

, ,

то система уравнений в матричной форме примет вид:

Х=АХ + У.

Полученная система уравнений называется экономико-математической моделью межотраслевого баланса (моделью Леонтьева, моделью «затраты-выпуск»). С помощью этой модели можно выполнять три варианта расчетов:

o Задав в модели величины валовой продукции каждой отрасли (Xi), можно определить объемы конечной продукции каждой отрасли (Yi):

Y = (Е - А)Х (2).

o Задав величины конечной продукции всех отраслей г), можно определить величины валовой продукции каждой отрасли (Х)

o Для ряда отраслей задав величины валовой продукции, а для всех остальных отраслей задав объемы конечной продукции, можно найти величины конечной продукции первых отраслей и объемы валовой продукции вторых.

В формулах Е обозначает единичную матрицу n-го порядка, а - А)-1 обозначает матрицу, обратную к матрице - А). Если определитель матрицы (Е - А) не равен нулю, т.е. эта матрица невырожденная, то обратная к ней матрица существует. Обозначим эту обратную матрицу через В=(Е —А)-1, тогда систему уравнений в матричной форме (2) можно записать в виде

X= ВY.

Элементы матрицы В будем обозначать через bij, тогда из матричного уравнения для любой i-йотрасли можно получить следующее соотношение:

Из последних соотношений следует, что валовая продукция выступает как взвешенная сумма величин конечной продукции, причем весами являются коэффициенты bij, которые показывают, сколько всего нужно произвести продукции i-й отрасли для выпуска в сферу конечного использования единицы продукции j-й отрасли. В отличие от коэффициентов прямых затрат аij коэффициенты bij называются коэффициентами полных материальных затрат и включают в себя как прямые, так и косвенные затраты всех порядков. Если прямые затраты отражают количество средств производства, израсходованных непосредственно при изготовлении данного продукта, то косвенные относятся к предшествующим стадиям производства и входят в производство продукта не прямо, а через другие (промежуточные) средства производства.

 


Дата добавления: 2015-08-20; просмотров: 67 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Метод Гаусса в Excel.| Решение.

mybiblioteka.su - 2015-2025 год. (0.016 сек.)