Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Определение. Пусть функция бесконечно дифференцируема в некоторой окрестности точки

Алгоритм нахождения точек экстремума по первому признаку экстремума функции. | Графическая иллюстрация. | Второй признак экстремума функции. | Третье достаточное условие экстремума функции. | Точки экстремума | Задачи на нахождения экстремума функции | Производные высших порядков. Формула Тейлора | Неопределенный и определенный интегралы | Геометрический смысл определенного интеграла. | Признак сходимости Даламбера и Коши |


Читайте также:
  1. Attribute – определение
  2. B)& Решение, определение, постановление и судебный приказ
  3. Defining and instantiating classes Определение и создание экземпляра классы
  4. Defining functions Определение функции
  5. Defining lazy properties Определение ленивых свойства
  6. А) Глазомерное определение расстояний
  7. А) определение группы соединения обмоток;

Пусть функция бесконечно дифференцируема в некоторой окрестности точки . Формальный ряд

называется рядом Тейлора функции в точке .

То есть, рядом Тейлора для функции в окрестности точки называется степенной ряд относительно двучлена вида


Дата добавления: 2015-08-20; просмотров: 49 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Понятие суммы степенного ряда. Ряд Тейлора| Свойства

mybiblioteka.su - 2015-2025 год. (0.005 сек.)