Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Фундаментальная система решений однородной системы уравнений

Выборочное среднее | Доверительный интервал и доверительная вероятность | Два или более случайные величины, описывающих некоторое явление называют системой или комплексом случайных величин. | Построить полигон частот. | По данным таблицы составить кумулятивный вариационный ряд, для которого построить кумуляту. | Тест содержал 25 заданий. Построить гистограмму. | Первый способ | Второй способ | Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами. | Алгоритм нахождения общего решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами . |


Читайте также:
  1. A. Организация, деятельность которой направлена на систематическое получение прибыли от пользования имуществом, продажи товаров, выполнения работ или оказания услуг.
  2. I) Положение русских войск, недостатки военной системы Николая I, причины поражения в Крымскую войну из статей «Военного сборника».
  3. I. Адаптация системы представительной демократии к японским условиям
  4. I. Религиозная система древнего Двуречья
  5. I. Система цен на акции
  6. I. ЦЕННОСТНОЕ ОСНОВАНИЕ ВОСПИТАТЕЛЬНОЙ СИСТЕМЫ
  7. II. Система показателей, характеризующих доходность акции

Фундаментальная система решений – это множество линейно независимых векторов , каждый из которых является решением однородной системы, кроме того, решением также является линейная комбинация данных векторов , где – произвольные действительные числа.

Количество векторов фундаментальной системы рассчитывается по формуле:

Однако в практических заданиях гораздо удобнее ориентироваться на следующий признак: количество векторов фундаментальной системы равно количеству свободных неизвестных.

Представим общее решение Примера №3 в векторной форме. Свободная переменная в данном случае одна, поэтому фундаментальная система решений состоит из единственного вектора . Как его найти? Для этого свободной переменной нужно придать произвольное ненулевое значение. Проще всего, конечно же, выбрать и получить: .

Координаты вектора должны удовлетворять каждому уравнению системы, и будет не лишним в этом убедиться.

Ответ следует записать в виде линейной комбинации векторов фундаментальной системы. В нашей ситуации линейная комбинация состоит из одинокого слагаемого. Общее решение однородной системы я буду обозначать через вектор (подстрочный индекс расшифровывается «Общее Однородной»).

Ответ: общее решение: , где (любое вещественное число)

Придавая параметру различные действительные значения, можно получить бесконечно много частных решений, например, если , то вектор частного решения однородного уравнения («Частное Однородной») равен:
, то есть набор переменных удовлетворяет каждому уравнению системы.

Это мы рассмотрели традиционный способ построения фундаментальной системы в так называемом нормальном виде – когда свободным переменным придаются исключительно единичные значения. Но правила хорошего математического тона предписывают избавляться от дробей, если это возможно. Поэтому в данном случае можно взять и из общего решения системы получить вектор с целыми координатами:

И тогда ответ запишется в эквивалентной форме:
, где (любое вещественное число)

 


Дата добавления: 2015-08-18; просмотров: 49 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Свойства линейных однородных дифференциальных уравнений.| Однородные системы линейных уравнений

mybiblioteka.su - 2015-2024 год. (0.006 сек.)