Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Радиальная составляющая вектора ускорения

Скорость точки | Абсолютная скорость точки | Скорость и ускорение точек твердого тела при поступательном движении | Определение скорости точки | Формула Ривальса | Вектор ускорения точки при естественном способе задания движения. | Естественный способ задания движения точки (что включает в себя) | Что такое циклоида. | Условия равновесия сходящейся системы сил. | Закон сохранения количества движения (закон сохранения импульса). |


Читайте также:
  1. Автономные импульсные процессы. Алгоритм вычисления вектора импульсов и вершин.
  2. АНАТОМИЧЕСКАЯ СОСТАВЛЯЮЩАЯ ГОЛОСА
  3. Вектор ускорения точки при естественном способе задания движения.
  4. Выполнение действий над векторами
  5. Дайте определения тангенциальному и нормальному ускорениям
  6. Деятельностная составляющая реализации программы
  7. Коммуникационная составляющая реализации программы.. 2260

Рассмотрим, как вычисляются скорость и ускорение точки при задании ее движения в полярных координатах, то есть когда заданы уравнения движения точки в виде r = r(t); = (t).

Вектор ускорения a точки направлен в сторону вогнутости траектории и определяется своими проекциями ar и на оси Pr и P по формулам:

ar = d2r/dt2 - r (d /dt)2 = - r ()2;

= r (d2 /dt2) + 2 (dr/dt) (d /dt) = r + 2 .

Величины ar и соответственно называются радиальным и трансверсальным ускорениями точки.


Дата добавления: 2015-08-17; просмотров: 75 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Связь полярных и декартовых координат.| Абсолютное ускорение точки

mybiblioteka.su - 2015-2025 год. (0.005 сек.)