Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Что такое циклоида.

Скорость точки | Абсолютная скорость точки | Скорость и ускорение точек твердого тела при поступательном движении | Определение скорости точки | Формула Ривальса | Вектор ускорения точки при естественном способе задания движения. | Связь полярных и декартовых координат. | Радиальная составляющая вектора ускорения | Абсолютное ускорение точки | Закон сохранения количества движения (закон сохранения импульса). |


Читайте также:
  1. Lt;question> Что такое резюме?
  2. Lt;question>Что такое микротема?
  3. Lt;question>Что такое норма литературного языка?
  4. Lt;question>Что такое «тезис»?
  5. quot;Что такое дружба и мой взгляд на дружбу".
  6. А, да-да-да, было такое.
  7. августа, на центральной площади Олимпийского парка, пройдет концерт Легендарной группы SCOOTERПропустить такое просто НЕВОЗМОЖНО!

Цикло́ида (от греч. κυκλοειδής — круглый) — плоская трансцендентная кривая. Циклоида определяется кинематически как траектория фиксированной точки производящей окружности радиуса , катящейся без скольжения по прямой.

Примем горизонтальную ось координат в качестве прямой, по которой катится производящая окружность радиуса .

· Циклоида описывается параметрически

,

.

· Уравнение в декартовых координатах:

· Циклоида может быть получена как решение дифференциального уравнения:

 

29 Ускорение Кориолиса

Ускорение Кориолиса или поворотное ускорение определяется по формуле

aC = 2 ωe * νr, где ω e - переносная угловая скорость, νr - относительная скорость точки. Направление ускорения Кориолиса определяется по правилу векторного произведения или по правилу Жуковского. Величина ускорения Кориолиса определяется выражением aC = 2 ωe νr sinα,где α – угол между векторами ωe и νr.

Ускорение Кориолиса с одной стороны характеризует изменение относительной скорости по направлению за счет переносного вращения и, с другой стороны, изменение величины переносной скорости за счет относительного движения.

30 Неподвижная центроида

ЦЕНТРОИДА - геом. место мгновенных центров вращения при движении неизменяемой плоской фигуры в её плоскости. На неподвижной плоскости это геом. место образует неподвижную Ц., а на плоскости, движущейся вместе с фигурой,- подвижную Ц. В каждый момент времени эти Ц. касаются друг друга в точке, являющейся для этого момента мгновенным центром вращения. Движение фигуры в её плоскости можно осуществить качением без скольжения подвижной Ц. по неподвижной.

31 НЦУ

31. МЦУ

При движении фигуры в плоскости в каждый момент времени существует такая точка плоской фигуры, ускорение которой в этот момент равно нулю. Эту точку называют мгновенным центром ускорений (МЦУ). Для того чтобы определить МЦУ, необходимо к векторам ускорений двух различных точек тела провести прямые под равными углами . В точке пересечения проведённых прямых и будет находиться мгновенный центр ускорений. Угол должен удовлетворять равенству:

где

— угловое ускорение тела;

— угловая скорость тела.

32 Нормальная составляющая вектора скорости точки

При движении тела по криволинейной траектории его скорость изменяется по модулю и направлению. Изменение вектора скорости за некоторый малый промежуток времени Δ t можно задать с помощью вектора (рис. 1.1.4).Вектор изменения скорости за малое время Δ t можно разложить на две составляющие: направленную вдоль вектора (касательная составляющая), и направленную перпендикулярно вектору (нормальная составляющая).

Рисунок 1.1.4. Изменение вектора скорости по величине и направлению. – изменение вектора скорости за время

33, 34?


Дата добавления: 2015-08-17; просмотров: 148 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Естественный способ задания движения точки (что включает в себя)| Условия равновесия сходящейся системы сил.

mybiblioteka.su - 2015-2024 год. (0.006 сек.)