Читайте также:
|
|
1.1.3 Естественный способ задания движения точки
Рисунок 1.4
На рисунке 1.4:
τ - орт касательной;
n - орт нормали;
b - орт бинормали;
При естественном способе задания движения предполагается определение параметров движения точки в подвижной системе отсчета, начало которой совпадает с движущейся точкой, а осями служат касательная, нормаль и бинормаль к траектории движения точки в каждом ее положении.
Единичные орты τ, n, b определяют направление соответствующих осей в каждой точке кривой.
Рисунок 1.5
Чтобы задать закон движения точки естественным способом необходимо:
1) знать траекторию движения;
2) установить начало отсчета на этой кривой;
3) установить положительное направление движения;
4) дать закон движения точки по этой кривой, т.е. выразить расстояние от начала отсчета до положения точки на кривой в данный момент времени ∪OM=S(t).
Зная эти параметры можно найти все кинематические характеристики точки в любой момент времени (рисунок 1.5).
Скорость точки определяется по формулам (1.9)
V=τ⋅dS/dt, V=dS/dt. (1.9)
Первая формула определяет величину и направление вектора скорости, вторая формула только величину.
Ускорение определяется как производная от вектора скорости:
т.е. a=aτ+an. (1.10)
В формуле (1.10)
aτ=τ ⋅dV/dt=τ⋅d2S/dt2, aτ=dV/dt=τ⋅d2S/dt2 - касательное ускорение; оно характеризует быстроту изменения величины скорости точки;
an=n⋅V2/ρ, an=V2/ρ - нормальное ускорение точки; характеризует быстроту изменения направления вектора скорости;
ρ - радиус кривизны траектории в данной точке (например, для окружности: ρ=R, для прямой линии ρ=∞).
Полное ускорение точки определяется следующим образом (рисунок 1.5):
Выше отмечалось, что всегда можно перейти от одного способа задания закона движения точки к другому. Поэтому, преобразовывая одни и те же формулы, можно получить другое их написание.
Например,
или aτ=acosγ (рисунок 1.5).
Далее
26. Величины скоростей двух точек твердого тела в плоском движении в некоторый момент времени, пропорц. их расстоянию до третьей точки. Что это за точки?
26. Допустим, что так…
Мгновенным центром скоростей (МЦС) называется точка плоской фигуры, скорость которой в данный момент времени равна нулю (речь идет о плоскопараллельном движении твердого тела).
Для определения МЦС надо знать только направления скоростей VА и VВ каких-нибудь двух точек А и В сечения тела: МЦС находится в точке пересечения перпендикуляров, восстановленных из точек А и В к скоростям этих точек. Пусть Р – МЦС.
то есть скорости точек тела пропорциональны их расстояниям до МЦС.
Дата добавления: 2015-08-17; просмотров: 82 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Абсолютное ускорение точки | | | Что такое циклоида. |