Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Квантованные магнитные состояния

Отраженная и преломленная волны | Отражение от металлов | Полное внутреннее отражение | Диамагнетизм и парамагнетизм | Магнитные моменты и момент количества движения | Прецессия атомных магнитиков | Диамагнетизм | Теорема Лармора | В классической физике пет ни диамагнетизма, ни парамагнетизма | Момент количества движения в квантовой механике |


Читайте также:
  1. I. Характеристика состояния сферы создания и использования информационных и телекоммуникационных технологий в Российской Федерации, прогноз ее развития и основные проблемы
  2. II. ЗАДАЧИ ПАРТИИ В ОБЛАСТИ ПОДЪЕМА МАТЕРИАЛЬНОГО БЛАГОСОСТОЯНИЯ НАРОДА
  3. II. ПУСК КОТЛА ИЗ ХОЛОДНОГО СОСТОЯНИЯ.
  4. VII. Хирургия. Навык хирургии позволяет персонажу снимать критические состояния с других персонажей и себя. Последний уровень навыка доступен только персонажу класса Медик.
  5. Агрегатные состояния вещества
  6. Акты гражданского состояния и их гражданско-правовое значение.
  7. Аллергические состояния

В предыдущей главе мы говорили, что в квантовой механике момент количества движе­ния системы не может иметь произвольного направления, а его компоненты вдоль данной оси могут принимать только определенные дискретные эквидистантные значения. Это по­разительная, но характерная особенность кван­товой механики. Вам может показаться, что еще слишком рано влезать в такие вещи, что надо подождать, пока вы хоть немного не привыкнете к ним и не будете готовы воспри­нимать подобные идеи. Но дело в том, что при­выкнуть к ним вы никогда не сможете. Вы никогда не сможете легко их воспринимать. Это, пожалуй, самое сложное из всего, что я рассказывал вам до сих пор и, главное, нет способа описать это как-то более вразумительно и не так хитроумно и сложно по форме. Поведе­ние вещества в малых масштабах, как я уже говорил много раз, отличается от всего того, к чему вы привыкли, и поистине весьма странно. Вы, конечно, согласитесь, что было бы неплохо попытаться поближе познакомиться с явлени­ями в малом масштабе, продолжая одновремен­но использовать классическую физику, и приобрести поначалу хоть какой-то опыт, пусть даже не понимая всего достаточно глубоко. Понимание этих вещей приходит очень медлен­но, если оно приходит вообще. Конечно, по­немногу начинаешь чувствовать, что может и что не может произойти в данной квантовомеханической ситуации, а это, возможно, и называ­ется «пониманием», но добиться приятного чувства «естественности» квантовомеханических правил здесь невозможно. Они-то, конечно, естественны, но с точки зрения нашего повседневного опыта на привычном уровне остаются очень уж необыч­ными. Мне бы хотелось объяснить вам, что позиция, которую мы собираемся занять по отношению к этому правилу о дискрет­ности значений момента количества движения, совершенно отлична от отношения ко многим другим вещам, о которых шла речь. Я даже не буду пытаться «объяснять» его, но должен хоть рассказать вам, что получается. Было бы нечестно с моей стороны, описывая магнитные свойства материалов, не указать, что классическое объяснение магнетизма, т. е. момента коли­чества движения и магнитного момента, несостоятельно.

Одно из наиболее необычных следствий квантовой механики состоит в том, что момент количества движения вдоль любой оси всегда оказывается равным целой или полуцелой доле h, причем какую бы ось вы ни взяли, это всегда будет так. Пара­доксальность здесь заключается в следующем любопытном фак­те: если вы возьмете любую другую ось, то окажется, что ком­поненты относительно этой оси тоже будут взяты из того же самого набора значений. Однако оставим рассуждения до того времени, когда у вас наберется достаточно опыта и вы сможете насладиться тем, как этот кажущийся парадокс в конце концов разрешится.

Сейчас просто примите на веру, что у каждой атомной сис­темы есть число j, называемое спином системы (оно может быть либо целым, либо полуцелым), и что компоненты момента коли­чества движения относительно любой данной оси всегда при­нимают одно из значений между +jhи - jh:

Мы упомянули также, что магнитный момент любой простой атомной системы имеет то же самое направление, что и ее момент количества движения. Это справедливо не только для атомов или ядер, но и для элементарных частиц. Каждая элементарная частица обладает характерной для нее величиной j и своим собственным магнитным моментом. (Для некоторых частиц обе они равны нулю.) Мы понимаем под «магнитным моментом системы», что ее энергия в направленном по оси z магнитном поле для слабых полей может быть записана как — mz В. Мы должны условиться не брать слишком больших полей, ибо они будут возмущать внутренние движения системы и энергия не будет мерой магнитного момента, который система имела до включения магнитного поля. Но если поле достаточно слабо, то оно изменяет энергию на величину

DU=-mzB, (35.2)

с тем условием, что в этом выражении мы должны сделать под­становку

причем Jz равно одному из значений (35.1).

Предположим, что мы взяли систему со спином j=3/2 В отсутствие магнитного поля у системы было бы четыре раз­личных возможных состояния, соответствующих различным значениям Jz с одной и той же энергией. Но в тот момент, когда мы включаем магнитное поле, появляется дополнительная энергия взаимодействия, которая разделяет эти состояния на четыре состояния, слабо различающиеся по энергии, или, как говорят, первоначальный энергетический уровень расщепился; на четыре новых уровня. Эти уровни определяются энергией, пропорциональной произведению В на h, и на 3/2, 1/2, -1/2 или -3/2 в зависимости от величины Jг. Расщепление энерге­тических уровней в атомной системе со спинами 1/2, 1 и 3/2 показаны на фиг. 35.1.

 

(Вспомните, что для любого расположе­ния электронов магнитный момент всегда направлен противо­положно моменту количества движения.)

Обратите внимание, что «центр тяжести» энергетических уровней на фиг. 35.1 один и тот же как в присутствии магнит­ного поля, так и без него. Заметьте также, что все расстояния от одного уровня до следующего для данной частицы в данном магнитном поле равны между собой. Расстояние между уровнями для данного магнитного поля В мы будем записывать как hwp, что является просто определением wp. Воспользовавшись (35.2) и (35.3), получим

hwp=g(qe/2m)hB.

или

wp=g(qe/2m)B.(35.4)

Величина g(qe/2m) равна просто отношению магнитного момента к моменту количества движения и характеризует свойства частицы. Формула (35.4) в точности совпадает с формулой, полу­ченной нами в гл. 34 для угловой скорости прецессии гироскопа с магнитным моментом (m и моментом количества движения J в магнитном поле.


Дата добавления: 2015-08-20; просмотров: 71 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Магнитная энергия атомов| Опыт Штерна — Герлаха

mybiblioteka.su - 2015-2024 год. (0.007 сек.)