Читайте также: |
|
В этой главе я начну рассказывать о магнитных свойствах материалов. Материал, обладающий наиболее сильными магнитными свойствами, разумеется,— железо. Подобными же магнитными свойствами обладают еще такие элементы, как никель, кобальт и (при достаточно низких температурах, ниже 16° С) гадолиний и другие редкоземельные металлы, а также некоторые особые сплавы. Такой вид магнетизма называется ферромагнетизмом. Это достаточно сложное и удивительное явление, и ему мы посвятим специальную главу. Но и все обычные вещества тоже имеют некоторые магнитные свойства, хотя и не столь ярко выраженные, а много слабее — в тысячи и миллион раз меньше, чем эффекты в ферромагнитных материалах. Здесь мы собираемся описать обычный магнетизм, т. е. магнетизм неферромагнитных веществ.
Этот слабый магнетизм бывает двух сортов. Некоторые материалы притягиваются магнитным полем, другие же отталкиваются им. В отличие от электрического эффекта в веществе, который всегда приводит к притяжению диэлектриков, магнитный эффект имеет два знака. Наличие этих двух знаков легко продемонстрировать с помощью сильного электромагнита, один из полюсных наконечников которого заострен, а другой — плоский (фиг. 34.1).
Фиг. 34.1. Небольшой висмутовый цилиндр слабо отталкивается заостренным полюсом; кусочек алюминия будет притягиваться.
Магнитное поле у заостренного полюса намного сильнее, нежели у плоского. Если небольшой кусочек материала, подвешенный на длинной струне, поместить между полюсами такого магнита, то на него, вообще говоря, действует очень слабенькая сила. Действие этой силы можно обнаружить по незначительному смещению подвешенного кусочка материала при повороте магнита. Оказывается, что ферромагнитные материалы сильно притягиваются заостренным полюсом, а все остальные — очень слабо. А есть и такие, которые не притягиваются заостренным полюсом, а слабо отталкиваются.
Этот эффект легче всего наблюдать на маленьком цилиндре из висмута, который выталкивается, из области сильного поля. Вещества, которые отталкиваются, подобно висмуту, называются диамагнетиками. Висмут — один из сильнейших диамагнетиков, но даже и его магнитный эффект очень слаб. Диамагнетизм всегда очень слаб. Если между полюсами подвесить кусочек алюминия, то на него все же будет действовать слабенькая сила, но направленная в сторону заостренного полюса. Вещества, подобные алюминию, называются парамагнетиками. (В таких экспериментах при включении и выключении магнита из-за вихревых токов возникают силы, которые могут дать сильный толчок. Поэтому нужно быть очень внимательным и смотреть только на чистое перемещение после того, как подвешенный предмет успокоился.)
Сейчас я коротко опишу механизм этих двух эффектов. Прежде всего атомы многих веществ не имеют постоянных магнитных моментов, или, вернее, все магнитные моменты внутри каждого атома уравновешены так, что суммарный магнитный момент атома равен нулю. Спиновые и орбитальные моменты электронов сбалансированы так, что у каждого данного атома никакого среднего магнитного момента нет. Если при этих обстоятельствах вы включаете магнитное поле, то внутри атома по индукции генерируются слабые дополнительные токи.
В соответствии с законом Ленца эти токи действуют так, чтобы сопротивляться увеличивающемуся магнитному полю. Таким образом, наведенный магнитный момент атомов направлен противоположно магнитному полю. Это и есть механизм диамагнетизма.
Однако существуют такие вещества, атомы которых все же обладают магнитным моментом, т. е. электронные спины и орбиты которых имеют ненулевой полный циркулирующий ток. Таким образом, кроме диамагнитного эффекта (а он всегда присутствует), существует еще возможность «выстраивания» индивидуальных атомных моментов в одном направлении. Магнитные моменты в этом случае стараются выстроиться по направлению магнитного поля (точно так же, как постоянные диполи в диэлектрике выстраиваются в электрическом поле) и наведенный магнетизм стремится усилить магнитное поле. Это и есть парамагнитные вещества. Парамагнетизм, вообще говоря, довольно слаб, потому что выстраивающие силы относительно малы по сравнению с силами теплового движения, которые стараются разрушить упорядочивание. Отсюда также следует, что парамагнетизм обычно чувствителен к температуре. (Исключение составляет парамагнетизм, обусловленный спинами электронов, ответственных за проводимость металлов. Но мы не будем обсуждать здесь это явление.) Для обычного парамагнетизма эффект тем сильнее, чем ниже температура. При низких температурах атомы выстраиваются в большей степени, поскольку разупорядочивание вследствие тепловых колебаний (соударений) будет меньше. Но, с другой стороны, диамагнетизм более или менее не зависит от температуры. У любого вещества с выстроенными магнитными моментами есть как диамагнитный, так и парамагнитный эффекты, причем парамагнитный эффект обычно доминирует.
В гл. 11 (вып. 5) мы описывали сегнетоэлектрические материалы, все электрические диполи которых выстраиваются в результате взаимного действия атомов друг на друга своими электрическими полями. Можно представить себе магнитный аналог сегнетоэлектричества, в котором все атомные моменты, действуя друг на друга, выстраивают сами себя. Если бы вы попытались вычислить, как это должно происходить, то обнаружили бы, что из-за того, что магнитные силы гораздо слабее электрических, тепловое движение должно расстраивать упорядочивание даже при столь низких температурах, как 10° К. Так что при комнатных температурах любое постоянное выстраивание магнитных моментов казалось бы невозможно.
Но, с другой стороны, именно это явление происходит в железе: там магнитные моменты все-таки выстраиваются. Между магнитными моментами различных атомов железа действуют эффективные силы, которые во много-много раз больше прямого магнитного взаимодействия. Это косвенный эффект, который можно объяснить только с помощью квантовой механики. Он примерно в десять тысяч раз сильнее прямого магнитного взаимодействия, и именно он выстраивает магнитные моменты в ферромагнитных материалах. Об этом особом взаимодействии мы будем говорить в дальнейшем.
Я попытался дать вам качественные объяснения диамагнетизма и парамагнетизма, однако хочу тут же внести поправку и сказать, что с точки зрения классической механики честным путем понять магнитные эффекты невозможно. Подобные магнитные эффекты — явления целиком квантовомеханические. Тем не менее привести некоторые «правдоподобные» классические рассуждения и дать вам представление о том, как здесь все происходит, все-таки небесполезно.
Попробуем встать на этот путь. Можно приводить разные физические аргументы и строить догадки о том, что происходит с веществом, однако все эти аргументы будут в той или иной степени «незаконными», так как в любом из магнитных явлений весьма существенную роль играет квантовая механика. С другой стороны, бывают такие системы, подобные плазме или скоплению множества свободных электронов, где электроны все же живут по законам классической механики. При таких обстоятельствах некоторые из теорем классического магнетизма будут очень полезны. Кроме того, классические рассуждения полезны еще и по историческим причинам: ведь пока люди еще не могли понять глубокий смысл и поведение магнитных материалов, они пользовались классическими аргументами. Так что классическая механика все же способна дать нам полезные сведения. И только если стремиться быть совсем честным, то надо отложить изучение магнетизма до тех пор, пока вы не пройдете квантовую механику.
А мне все-таки не хочется ждать так долго ради того, чтобы понять такую простую вещь, как диамагнетизм. Для целого ряда полуобъяснений происходящего можно ограничиться классической механикой, сознавая, однако, что наши доводы на самом деле нуждаются в квантовомеханическом подкреплении.
Дата добавления: 2015-08-20; просмотров: 126 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Полное внутреннее отражение | | | Магнитные моменты и момент количества движения |