Читайте также:
|
|
Напряжение – численная мера распределения внутренних сил по плоскости поперечного сечения. Его используют при исследовании и определении внутренних сил любой конструкции.
Выделим на плоскости сечения площадку DA; по этой площадке будет действовать внутренняя сила DR (рис. I.1.10 а).
Величина отношения DR/DA=pср называется средним напряжением на площадке DA. Истинное напряжение в точке А получим устремив DA к нулю:
Нормальные напряжения возникают, когда частицы материала стремятся отдалиться друг от друга или, наоборот, сблизиться. Касательные напряжения связаны со сдвигом частиц по плоскости рассматриваемого сечения.
Очевидно, что . Касательное напряжение в свою очередь может быть разложено по направлениям осей x и y (tzх, tzу). Размерность напряжений – Н/м2 (Па).
При действии внешних сил наряду с возникновением напряжений происходит изменение объема тела и его формы, т. е. тело деформируется. При этом различают начальное (недеформированное) и конечное (деформированное) состояния тела.
Отнесем недеформированное тело к декартовой системе координат Oxyz. Положение некоторой точки М в этой системе координат определяется радиус-вектором r(х, у, z). В деформированном состоянии точка М займет новое положение М/, характеризуемое радиус-вектором r ' (х, у, z). Вектор u=r'—r называется вектором, перемещений точки М.
Под действием внешних сил любое тело деформируется, т.е. его форма и размеры изменяются, а точки тела меняют положение в пространстве. Пусть имеется тело с приложенными к нему силами Рi. Мысленно через точку а в направлениях осей у и z проведем бесконечномалые отрезки ав и ас, длины которых dy и dz. После деформации бруса отрезки примут положение, изображенное штриховой линией (рис. I.1.14). Точка а переместится в положение а1. Величина аа1, равная изменению координат точки называется линейным перемещением точки а. Отрезки ав и ас займут новые положения а1в1 и а1с1. Их длины изменяются на Δdy и Δdz и называются абсолютными линейными деформациями. Угол между начальным положением отрезка ав и конечным - а1в1 - называются угловым перемещением b. Линейные перемещения измеряются в единицах длины, угловые - в радианах или градусах. Отношение приращения длины отрезка к его начальной длине представляет собой относительную линейную деформацию, т.е. . Аналогично .
Линейные деформации величины безразмерные. Изменение первоначально угла между отрезками ав и ас после приложения к телу нагрузки, выраженное в радианах, представляет собой угловую деформацию .
Совокупность линейных деформаций e по различным направлениям и угловых деформаций g по различным плоскостям, проходящим через рассматриваемую точку, представляет собой деформированное состояние в этой точке.
Дата добавления: 2015-07-25; просмотров: 868 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Внешние и внутренние силы. Применение метода сечения для определения внутренних сил и напряжений | | | Продольная и поперечная деформация при растяжении и сжатии. Коэффициент Пуассона. Закон Гука при растяжении. Потенциальная энергия деформации. |