Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Метод Зейделя. Метод Зейделя отличается от метода Якоби тем, что вычисления ведутся не по формулам

Метод деления отрезка пополам. | Метод Ньютона (метод касательных). | Метод простой итерации. | Метод Гаусса. | Порядок решения. | Метод прогонки. | Порядок решения. | Метод простой итерации (метод Якоби). | Порядок решения. | Метод Зейделя. |


Читайте также:
  1. CПОСОБИ ПОБУДОВИ ШТРИХОВИХ КОДІВ ТА МЕТОДИ КЛАСИФІКАЦІЇ
  2. D. Лабораторні методи
  3. I. . Психология как наука. Объект, предмет и основные методы и психологии. Основные задачи психологической науки на современном этапе.
  4. I. Культурология как наука. Предмет. Место. Структура. Методы
  5. I. МЕТОД
  6. I. Методы исследования ПП
  7. I.Методы формирования соц-го опыта.

Метод Зейделя отличается от метода Якоби тем, что вычисления ведутся не по формулам (3.4), а по следующим формулам:

(3.6)

При решении систем нелинейных уравнений необходимо определить приемлемое начальное приближение. Для случая двух уравнений с двумя неизвестными начальное приближение находится графически.

Сходимость метода Зейделя (Якоби тоже) зависит от вида функции в (3.2), вернее она зависит от матрицы, составленной из частных производных:

, (3.7)

где .

Итерационный процесс сходится, если сумма модулей каждой строки меньше единицы в некоторой окрестности корня:

,

или

Пример 3.1. Найти решение системы методом Зейделя с точностью :

(3.8)

Решение: Представим (3.8) в виде (3.5):

(3.9)

Задаем начальные приближения , .

Запишем достаточное условие сходимости и определяем , :

и

Определяем частныезначения , ,которые удовлетворяют неравенствам

и

Переходим к реализации итерационного процесса:

 

Определяем погрешностьпо формуле :

Таким образом, имеем решение: , .

Программа, реализующая решение данной задачи, представлена на рис. 3.1.

CLS
INPUT X,Y, M1,M2
1 X=X-(2*SIN(X+1)-Y - 0.5)/M1
Y=Y-(10*COS(Y-1)-X+0.4)/M2
PRINT X,Y
INPUT TT
GOTO 1
END
Рис. 3.1. Программа решения системы нелинейных уравнений методом Зейделя.

 


Дата добавления: 2015-07-25; просмотров: 95 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Метод простой итерации (метод Якоби).| Метод Ньютона.

mybiblioteka.su - 2015-2024 год. (0.006 сек.)