Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Пример. Найти формулу вычисления объема шара.

Обыкновенные дифференциальные уравнения | Задания для самостоятельной работы | Криволинейные интегралы | Криволинейные интегралы первого рода | Криволинейные интегралы второго рода. | Поверхностные интегралы первого рода | Поверхностные интегралы второго рода. | Формула Стокса | Циркуляция векторного поля | Свойства общего решения |


Читайте также:
  1. Б.2 В. 14 Корректность постановки задач математической физики. Привести пример.
  2. Пример.
  3. Пример.
  4. Пример.
  5. Пример.
  6. Пример.
  7. Пример.

Найти формулу вычисления объема шара.

Решение: в поперечных сечениях шара (сечения параллельны плоскости XOY) получаются окружности.

Уравнение шара имеет вид:

Найти объем шара можно по формуле:

 

Для решения этой же задачи можно воспользоваться преобразованием интеграла к сферическим координатам. Это значительно упростит интегрирование.


Дата добавления: 2015-07-16; просмотров: 82 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Связь поверхностных интегралов первого и второго рода.| Элементы теории поля

mybiblioteka.su - 2015-2025 год. (0.005 сек.)