Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Примеры пространств сигналов

Классификация сигналов | Метрические пространства | Полные ортонормированные системы | Функции отсчётов | Функции Уолша | Система единичных импульсов | Система Уолша–Адамара | Функции Хаара | Преобразование Фурье. Основные свойства | Свойства спектральной плотности |


Читайте также:
  1. C 4 redo группами по 2 файла, 2 control-файлами, табличным пространством system, имеющим 2 файла данных по 50 мб
  2. D.1. Примеры уязвимостей
  3. II. Организация сценического пространства.
  4. III. Крымское ханство как пространство межкультурного взаимодействия средневекового Крыма.
  5. III. Структура «минус»-пространства, его семантика, его трансформации
  6. III.1. ИНТЕГРАЛЬНЫЙ СПОСОБ ОБРАБОТКИ СИГНАЛОВ В ЧМ—РВ
  7. Барокко как стиль иск-ва. Примеры барокко в жив-си, ск-ре, арх-ре.

Пространство

Элементами множества являются в общем случае комплексные функции заданные на интервале конечном или бесконечном. Будем считать, что функции являются функциями с интегрируемым квадратом

Этот интеграл обычно трактуется как энергия сигнала, если принять, что - это ток или напряжение на сопротивлении

 

При этом является пространством с ограниченной энергией. Все физические сигналы имеют конечную энергию.

В скалярное произведение, норма и расстояние определяются соответственно

Метрика называется среднеквадратичной метрикой и определяет среднеквадратичное отклонение сигнала от

Условие ортогональности двух векторов и в записывается в виде

Обобщенный ряд Фурье (1.2.13) в принимает вид

где

есть коэффициенты Фурье по системе { j n }.

Пространство

Элементами множества являются последовательности чисел (в общем случае комплексные) удовлетворяющие условию

Такие последовательности называют также счётномерными векторами. В данном классе последовательностей вводят операции сложения векторов и умножения их на скаляр:

Скалярное произведение, норма и расстояние определяются соответственно

Эти соотношения определяют пространство которое можно рассматривать как координатную реализацию гильбертова пространства

Обратимся к формулам обобщенного ряда Фурье (1.2.13) – (1.2.16). Эти формулы устанавливают взаимно однозначное соответствие (изоморфизм) между сигналом и совокупностью его коэффициентов Фурье. Сигнал является элементом пространства а совокупность коэффициентов Фурье (счетномерный вектор) – элементом пространства Между пространствами и устанавливается изометрия, при которой сохраняется норма элементов пространств и (1.2.18).

Пространство

Ограничение размерности векторов до координат приводит к пространству которое является подпространством комплексного гильбертова пространства Характерно, что в существуют линейно независимых векторов Эти векторов называют базисом N- мерного пространства.

Обобщенный ряд Фурье в пространстве с ортогональным базисом принимает вид

где

Пример 1.3.1. В качестве базисной системы в рассмотрим д искретные экспоненциальные функции (ДЭФ) (см. п. 1.7):

В этой формуле и принимают целочисленные значения, т. е. число функций в системе равно числу отсчетов каждой функции. Вследствие этого, а также в силу линейной независимости, система ДЭФ является полной в пространстве

Функции (ДЭФ) ортогональны:

Поэтому ряд Фурье по этой системе

где коэффициенты Фурье

Соотношения и определяют пару дискретного преобразования Фурье (ДПФ), которое будет рассмотрено в главе 3. Отличительной особенностью ДПФ является то, что сигнал и его спектр определяются на конечных и равных интервалах Последовательности и – периодические (с периодом ) функции дискретного аргумента. Это объясняется N- периодичностью базисных функций ДПФ по обоим аргументам. При этом меняется привычное понятие сдвига, а именно: сдвиг сигнала и его спектра на интервале понимается как циклическая перестановка отсчетов (часть сигнала или его спектра, выходящая за пределы интервала с одного конца, вставляется в этот интервал с другого конца). При циклическом сдвиге значения индексов k и n отсчитываются по модулю

 


Дата добавления: 2015-11-16; просмотров: 68 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Гильбертово пространство| Общий метод дискретизации

mybiblioteka.su - 2015-2025 год. (0.009 сек.)