Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Раздел 14. ЦПТ (центральная предельная теорема)

Моменты старших порядков. Дисперсия | Свойства дисперсии | Математические ожидания и дисперсии стандартных распределений | Раздел 12. Числовые характеристики зависимости случайных величин | Свойства коэффициента корреляции | Раздел 13. Куда и как сходятся последовательности случайных величин | Центральная предельная теорема | Примеры использования ЦПТ |


Читайте также:
  1. I. ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЙ РАЗДЕЛ
  2. I. РАЗДЕЛ ПО ПРОБЛЕМЕ НЕДОСТАТОЧНОСТИ МИТРАЛЬНОГО КЛАПАНА (СИНДРОМ МИТРАЛЬНОЙ РЕГУРГИТАЦИИ)
  3. I.1. Выбор способа разделки и резки кристаллов
  4. II. РАЗДЕЛ ПО ПРОБЛЕМЕ СТЕНОЗА МИТРАЛЬНОГО ОТВЕРСТИЯ ( СИНДРОМ МИТРАЛЬНОЙ ОБСТРУКЦИИ ).
  5. III. РАСПРЕДЕЛЕНИЕ УЧЕБНОГО ВРЕМЕНИ ПО СЕМЕСТРАМ, РАЗДЕЛАМ, ТЕМАМ И ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ
  6. V. ОЦЕНКА КАЧЕСТВА И КЛАССИФИКАЦИЯ ДОКАЗАТЕЛЬНОЙ СИЛЫ МЕТОДОВ, ПРИВЕДЕННЫХ В РАЗДЕЛЕ ЛЕЧЕНИЕ.
  7. Абсолют, объединяющий в себе объект и субъект, разделился на миллиарды душ, через которых возвращается сам к себе. Жизнь – это путешествие Бога Домой

14.1 Как быстро сходится к ?

Пусть, как в законе больших чисел в форме Чебышёва, — сумма n независимых и одинаково распределенных величин с конечной дисперсией. Тогда, в силу ЗБЧ, с ростом n. Или, после приведения к общему знаменателю,

Если при делении на n мы получили в пределе нуль (в смысле некоторой, все равно какой, сходимости), резонно задать себе вопрос: а не слишком ли на «много» мы поделили? Нельзя ли поделить на что-нибудь, растущее к бесконечности медленнее, чем n, чтобы получить в пределе не нуль (и не бесконечность, само собой)?

Можно поставить этот вопрос по-другому. Вот последовательность, стремящаяся (как-то) к нулю. Можно ли ее домножить на что-либо растущее, чтобы «погасить» это стремление к нулю? Получив, тем самым, что-нибудь конечное и отличное от нуля в пределе?

Оказывается, что уже , или, что, то же самое, , не сходится к нулю. Распределение этой, зависящей от n, случайной величины становится все более похоже на нормальное распределение! Можно считать, что такая последовательность сходится к случайной величине, имеющей нормальное распределение, но сходится не по вероятности, а только в смысле сходимости распределений, или «слабой сходимости».


Дата добавления: 2015-11-16; просмотров: 56 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Законы больших чисел| Слабая сходимость

mybiblioteka.su - 2015-2024 год. (0.005 сек.)