Читайте также:
|
|
Мы будем называть следующее утверждение «ЦПТ А. М. Ляпунова» (1901), но сформулируем теорему Ляпунова только в частном случае — для последовательности независимых и одинаково распределенных случайных величин.
Теорема 31 (ЦПТ).
Пусть — независимые и одинаково распределенные случайные величины с конечной и ненулевой дисперсией: . Обозначим через сумму первых n случайных величин. Тогда последовательность с. в. слабо сходится к стандартному нормальному распределению.
Пользуясь определением и свойствами слабой сходимости, и заметив, что функция распределения любого нормального закона непрерывна всюду на R, утверждение ЦПТ можно сформулировать любым из следующих способов:
Следствие 18. Пусть — независимые и одинаково распределенные случайные величины с конечной и ненулевой дисперсией. Следующие утверждения эквивалентны друг другу и равносильны утверждению ЦПТ.
Для любых вещественных x < y при имеет место сходимость
Для любых вещественных x < y при имеет место сходимость
Для любых вещественных x < y при имеет место сходимость
Если — произвольная с. в. со стандартным нормальным распределением, то
Замечание 19. Еще раз напомним, что функция распределения стандартного нормального закона ищется либо по соответствующей таблице в справочнике, либо с помощью какого-либо программного обеспечения, но никак не путем нахождения первообразной.
Дата добавления: 2015-11-16; просмотров: 45 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Слабая сходимость | | | Примеры использования ЦПТ |