Читайте также:
|
|
Заметим, что на том же отрезке [0, 1] вероятности попадания в множества положительной меры совсем не нулевые. И термин «наудачу» мы когда-то описывали как раз в терминах вероятностей попадания в множество. Может быть, разумно описать распределение случайной величины, задав для любого множества, вероятность принять значения из этого множества? Это действительно полное описание распределения, но уж очень трудно с ней работать — слишком много множеств на прямой.
Нельзя ли обойтись заданием вероятностей попадания в какой-нибудь меньший набор множеств на прямой? Оказывается, что можно ограничиться только вероятностями попадания в интервалы (-¥, х) для всех х Î R, с помощью которых можно будет определить и вероятность попасть в любое другое множество.
Замечание 11. Можно с таким же успехом ограничиться набором вероятностей попадания в интервалы (-¥, х], или в (х,¥), или в [х,¥), или в (х1,x2). Впрочем, последних уже слишком много.
Определение 27. Функцией распределения случайной величины ξ называется функция Fξ(x): R ® [0, 1], при каждом x Î R равная Fξ(x) = P(ξ < x) = P{ω: ξ(ω) < x}
Пример 22. Случайная величина ξ имеет вырожденное распределение I c. Тогда
Пример 23. Случайная величина ξ имеет распределение Бернулли В р. Тогда
Пример 24. Будем говорить, что случайная величина ξ имеет равномерное распределение на отрезке [a, b] и писать ξ Î U a,b (“ uniform”), если ξ — координата точки, брошенной наудачу на отрезок [a, b] числовой прямой. Это распределение можно задать и с помощью функции распределения:
Дата добавления: 2015-11-16; просмотров: 58 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Дискретные распределения | | | Раздел 8. Абсолютно непрерывные распределения |