Читайте также:
|
|
Определение 25. Говорят, что случайная величина ξ имеет дискретное распределение, если существует конечный или счетный набор чисел {a1, a2, …} такой, что:
а) pi = P{ ξ = ai} > 0 для всех i;
б) .
То есть случайная величина ξ имеет дискретное распределение, если она принимает не более чем счетное число значений.
Определение 26. Если случайная величина ξ имеет дискретное распределение, назовем таблицей распределения соответствие ai ↔ pi, которое чаще всего рисуют так:
ξ | а1 | а2 | а3 | … |
Р | р1 | р2 | р3 | … |
Примеры дискретных распределений
Вырожденное распределение.
Говорят, что случайная величина ξ имеет вырожденное распределение с параметром а, и пишут ξ Î I a если ξ принимает единственное значение а с вероятностью 1, то есть P(ξ = a) = 1. Таблица распределения ξ имеет вид
ξ | а |
Р | 1 |
Распределение Бернулли.
Говорят, что случайная величина ξ имеет распределение Бернулли с параметром р, и пишут ξ Î В р, если ξ принимает значения 1 и 0 с вероятностями р и 1 - р, соответственно. Случайная величина ξ с таким распределением равна числу успехов в одном испытании схемы Бернулли с вероятностью успеха (0 успехов или 1 успех). Таблица распределения ξ имеет вид
ξ | 0 | 1 |
Р | (1-p) | р |
Биномиальное распределение.
Говорят, что случайная величина ξ имеет биномиальное распределение с параметрами n и p, где 0 £ p £, n и пишут ξ Î В n , р, если ξ принимает значения 0, 1, …,n с вероятностями P(ξ = k) = Cnk pk (1-p)n-k. Случайная величина ξ с таким распределением имеет смысл числа успехов в n испытаниях схемы Бернулли с вероятностью успеха р.
Таблица распределения ξ имеет вид
ξ | 0 | 1 | … | k | … | n |
Р | (1-p)n | n p(1-p)n-1 | … | Cnk pk (1-p)n-k | … | Pn |
Геометрическое распределение.
Говорят, что случайная величина τ имеет геометрическое распределение с параметром р, где 0 £ p £, n, и пишут τ Î G р, если τ принимает значения 1, 2, 3, … с вероятностями P(τ = k) = p (1-p)k-1. Случайная величина τ с таким распределением имеет смысл номера первого успешного испытания в схеме Бернулли с вероятностью успеха р.
Таблица распределения τ имеет вид
Дата добавления: 2015-11-16; просмотров: 75 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Случайные величины | | | Раздел 7. Функция распределения |