Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Представление об элементарных частицах и их взаимодействии. Ядерные взаимодействия. Атомная и термоядерная энергетика

Читайте также:
  1. IX. ПРЕДСТАВЛЕНИЕ, СУЖДЕНИЕ, ПОНЯТИЕ
  2. БИОЭНЕРГЕТИКА
  3. Вали здесь изначала, и человек получил о них представление уже
  4. Видеть и слышать. Искусство. Красота Аскетизм. Представление. Проблемы. Пространство.
  5. Виды взаимодействий элементарных частиц
  6. Визуализация, или мысленное представление
  7. ВИПАРЙАСА(санскр.) Неправильное представление, ошибка. Одна из пяти функций буддхи. См. Буддхи.

 

Элементарные частицы, в точном значении этого термина, – это первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. Элементарные частицы современной физики не удовлетворяют строгому определению элементарности, поскольку большинство из них по современным представлениям являются составными системами. Общее свойство этих систем заключается в том. Что они не являются атомами или ядрами (исключение составляет протон). Поэтому иногда их называют субъядерными частицами.

Частицы, претендующие на роль первичных элементов материи, иногда называют "истинно элементарные частицы". Первой открытой элементарной частицей был электрон. Его открыл английский физик Томсон в 1897 году. Первой открытой антицастицей был позитрон - частица с массой электрона, но положительным электрическим зарядом. Это античастица была обнаружена в составе космических лучей американским физиком Андерсоном в 1932 году.

В современном физике в группу элементарных относятся более 350 частиц, в основном нестабильных, и их число продолжает расти.

Если раньше элементарные частицы обычно обнаруживали в космических лучах, то с начала 50-х годов ускорители превратились в основной инструмент для исследования элементарных частиц. Микроскопические массы и размеры элементарных частиц обусловливают квантовую специфику их поведения: квантовые закономерности являются определяющими в поведении элементарных частиц.

Наиболее важное квантовое свойство всех элементарных частиц – это способность рождаться и уничтожаться (испускаться и поглощаться) при взаимодействии с другими частицами. Все процессы с элементарными частицами протекают через последовательность актов их поглощения и испускания.

Различные процессы с элементарными частицами заметно отличаются по интенсивности протекания. В соответствии с различной интенсивностью протекания взаимодействия элементарных частиц феноменологически делят на несколько классов: сильное, электромагнитное и слабое. Кроме того, все элементарные частицы обладают гравитационным взаимодействием.

Существование элементарных частиц физики обнаружили при изучении ядерных процессов, поэтому вплоть до середины XX века физика элементарных частиц была разделом ядерной физики. В настоящее время физика элементарных частиц и ядерная физика являются близкими, но самостоятельными разделами физики, объединенными общностью многих рассматриваемых проблем и применяемыми методами исследования. Главная задача физики элементарных частиц – это исследование природы, свойств и взаимных превращений элементарных частиц.

Представление о том, что мир состоит из фундаментальных частиц, имеет долгую историю. Впервые мысль о существовании мельчайших невидимых частиц, из которых состоят все окружающие предметы, была высказана за 400 лет до нашей эры греческим философом Демокритом. Он назвал эти частицы атомами, то есть неделимыми частицами. Наука начала использовать представление об атомах только в начале XIX века, когда на этой основе удалось объяснить целый ряд химических явлений. В 30-е годы XIX века в теории электролиза, развитой М. Фарадеем, появилось понятие иона и было выполнено измерение элементарного заряда. Конец XIX века ознаменовался открытием явления радиоактивности (А. Беккерель, 1896 г.), а также открытиями электронов (Дж. Томсон, 1897 г.) и α-частиц (Э. Резерфорд, 1899 г.). В 1905 году в физике возникло представление о квантах электромагнитного поля – фотонах (А. Эйнштейн).

В 1911 году было открыто атомное ядро (Э. Резерфорд) и окончательно было доказано, что атомы имеют сложное строение. В 1919 году Резерфорд в продуктах расщепления ядер атомов ряда элементов обнаружил протоны. В 1932 году Дж. Чедвик открыл нейтрон. Стало ясно, что ядра атомов, как и сами атомы, имеют сложное строение. Возникла протон-нейтронная теория строения ядер (Д. Д. Иваненко и В. Гейзенберг). В том же 1932 году в космических лучах был открыт позитрон (К. Андерсон). Позитрон – положительно заряженная частица, имеющая ту же массу и тот же (по модулю) заряд, что и электрон. Существование позитрона было предсказано П. Дираком в 1928 году. В эти годы были обнаружены и исследованы взаимные превращения протонов и нейтронов и стало ясно, что эти частицы также не являются неизменными элементарными «кирпичиками» природы. В 1937 году в космических лучах были обнаружены частицы с массой в 207 электронных масс, названные мюонами (μ-мезонами). Затем в 1947-1950 годах были открыты пионы (то есть π-мезоны), которые, по современным

Группа Название частицы Символ Масса (в электронных массах) Электрический заряд Спин Время жизни (с)
 
 
Частица Анти-частица
Фотоны Фотон γ       Стабилен
Лептоны Нейтрино электронное νe     1 / 2 Стабильно
Нейтрино мюонное νμ     1 / 2 Стабильно
Электрон e e+   –1 1 1 / 2 Стабильн
Мю-мезон μ μ+ 206,8 –1 1 1 / 2 2,2∙10–6
Адроны Мезоны Пи-мезоны π0 264,1     0,87∙10–16
π+ π 273,1 1 –1   2,6∙10–8
К-мезоны K + K 966,4 1 –1   1,24∙10–8
K 0 974,1     ≈ 10–10–10–8
Эта-нуль-мезон η0       ≈ 10–18
Барионы Протон p 1836,1 1 –1 1 / 2 Стабилен
Нейтрон n 1838,6   1 / 2  
Лямбда-гиперон Λ0 2183,1   1 / 2 2,63∙10–10
Сигма-гипероны Σ + 2327,6 1 –1 1 / 2 0,8∙10–10
Σ 0 2333,6   1 / 2 7,4∙10–20
Σ 2343,1 –1 1 1 / 2 1,48∙10–10
Кси-гипероны Ξ 0 2572,8   1 / 2 2,9∙10–10
Ξ 2585,6 –1 1 1 / 2 1,64∙10–10
Омега-минус-гиперон Ω   –1 1 1 / 2 0,82∙10–11

представлениям, осуществляют взаимодействие между нуклонами в ядре. В последующие годы число вновь открываемых частиц стало быстро расти. Этому способствовали исследования космических лучей, развитие ускорительной техники и изучение ядерных реакций.

Подавляющее большинство этих частиц являются нестабильными. Исключение составляют лишь фотон, электрон, протон и нейтрино. Все остальные частицы через определенные промежутки времени испытывают самопроизвольные превращения в другие частицы. Нестабильные элементарные частицы сильно

отличаются друг от друга по временам жизни. Наиболее долгоживущей частицей является нейтрон. Время жизни нейтрона порядка 15 мин. Другие частицы «живут» гораздо меньшее время. Например, среднее время жизни μ-мезона равно 2,2·10–6 с, нейтрального π-мезона – 0,87·10–16 с. Многие массивные частицы – гипероны имеют среднее время жизни порядка 10–10 с.

Существует несколько десятков частиц со временем жизни, превосходящим 10–17 с. По масштабам микромира это значительное время. Такие частицы называют относительно стабильными. Большинство короткоживущих элементарных частиц имеют времена жизни порядка 10–22–10–23 с.

Способность к взаимным превращениям – это наиболее важное свойство всех элементарных частиц. Элементарные частицы способны рождаться и уничтожаться (испускаться и поглощаться). Это относится также и к стабильным частицам с той только разницей, что превращения стабильных частиц происходят не самопроизвольно, а при взаимодействии с другими частицами. Примером может служить аннигиляция (то есть исчезновение) электрона и позитрона, сопровождающаяся рождением фотонов большой энергии. Может протекать и обратный процесс – рождение электронно-позитронной пары, например, при столкновении фотона с достаточно большой энергией с ядром. Такой опасный двойник, каким для электрона является позитрон, есть и у протона. Он называется антипротоном. Электрический заряд антипротона отрицателен. В настоящее время античастицы найдены у всех частиц. Античастицы противопоставляются частицам потому, что при встрече любой частицы со своей античастицей происходит их аннигиляция, то есть обе частицы исчезают, превращаясь в кванты излучения или другие частицы.

Античастица обнаружена даже у нейтрона. Нейтрон и антинейтрон отличаются только знаками магнитного момента и так называемого барионного заряда. Возможно существование атомов антивещества, ядра которых состоят из антинуклонов, а оболочка – из позитронов. При аннигиляции антивещества с веществом энергия покоя превращается в энергию квантов излучения. Это огромная энергия, значительно превосходящая ту, которая выделяется при ядерных и термоядерных реакциях.

В многообразии элементарных частиц, известных к настоящему времени, обнаруживается более или менее стройная система классификации. В табл. 9.9.1 представлены некоторые сведенья о свойствах элементарных частиц со временем жизни более 10–20 с. Из многих свойств, характеризующих элементарную частицу, в таблице указаны только масса частицы (в электронных массах), электрический заряд (в единицах элементарного заряда) и момент импульса (так называемый спин) в единицах постоянной Планка ħ = h / 2π. В таблице указано также среднее время жизни частицы.

Как видно из таблицы 5.1, элементарные частицы объединяются в три группы: фотоны, лептоны и адроны.

К группе фотонов относится единственная частица – фотон, которая является носителем электромагнитного взаимодействия.

Следующая группа состоит из легких частиц лептонов. В эту группу входят два сорта нейтрино (электронное и мюонное), электрон и μ-мезон. К лептонам относятся еще ряд частиц, не указанных в таблице. Все лептоны имеют спин 1/2.

Третью большую группу составляют тяжелые частицы, называемые адронами. Эта группа делится на две подгруппы. Более легкие частицы составляют подгруппу мезонов. Наиболее легкие из них – положительно и отрицательно заряженные, а также нейтральные π-мезоны с массами порядка 250 электронных масс (табл. 9.9.1). Пионы являются квантами ядерного поля, подобно тому, как фотоны являются квантами электромагнитного поля. В эту подгруппу входят также четыре K-мезона и один η0-мезон. Все мезоны имеют спин, равный нулю.

Вторая подгруппа – барионы – включает более тяжелые частицы. Она является наиболее обширной. Самыми легкими из барионов являются нуклоны – протоны и нейтроны. За ними следуют так называемые гипероны. Замыкает таблицу омега-минус-гиперон, открытый в 1964 г. Это тяжелая частица с массой в 3273 электронных масс. Все барионы имеют спин 1/2.

Обилие открытых и вновь открываемых адронов навела ученых на мысль, что все они построены из каких-то других более фундаментальных частиц. В 1964 г. американским физиком М. Гелл-Маном была выдвинута гипотеза, подтвержденная последующими исследованиями, что все тяжелые фундаментальные частицы – адроны – построены из более фундаментальных частиц, названных кварками. На основе кварковой гипотезы не только была понята структура уже известных адронов, но и предсказано существование новых. Теория Гелл-Мана предполагала существование трех кварков и трех антикварков, соединяющихся между собой в различных комбинациях. Так, каждый барион состоит из трех кварков, антибарион – из трех антикварков. Мезоны состоят из пар кварк–антикварк.

Виртуальные частицы в квантовой теории – это частицы, которые имеют такие же квантовые числа (спин, электрический и барионный заряды и др.), как и соответствующие реальные частицы, но для которых не выполняется обычная связь между энергией, импульсом и массой.

Гипотезу кварков предложил в 1967 г. американский физик-теоретик М. Гелл-Ман (р. 1929). Кварк – частица со спином 1/2 и дробным электрическим зарядом, составной элемент адронов. Это название было заимствовано М. Гелл-Маном в одном из фантастических романов и означает нечто пустяковое и странное.

Помимо спина, кварки имеют еще две внутренние степени свободы – «аромат» и «цвет» (степень свободы – независимое возможное изменение состояния физической системы, обусловленное вариациями ее параметров). Каждый кварк может находиться в одном из трех цветовых состояний, которые условно называют красным, синим и желтым (только для удобства – никакого отношения к оптическим свойствам это не имеет). В наблюдаемых адронах кварки скомбинированы таким образом, что возникающие состояния не несут цвета – являются «бесцветными». Ароматов известно пять и предполагается наличие шестого. Свойства кварков разных ароматов различны.

Обычное вещество состоит из легких и- и d-кварков, входящих в состав нуклонов ядер. Более тяжелые кварки создаются искусственно или наблюдаются в космических лучах. Здесь слова «создаются» и «наблюдаются» нельзя понимать буквально – ни один кварк не был зарегистрирован в свободном виде, их можно наблюдать только внутри адронов. При попытке выбить кварк из адрона происходит следующее: вылетающий кварк рождает на своем пути из вакуума пары кварк – антикварк, расположенные в порядке убывания скоростей. Один из медленных кварков занимает место исходного, а тот вместе с остальными рожденными кварками и антикварками образует адроны.

С принятием гипотезы кварков удалось создать стройную систему элементарных частиц. Однако предсказанные свойства этих гипотетических частиц оказались довольно неожиданными. Электрический заряд кварков должен выражаться дробными числами, равными 2/3 и 1/3 элементарного заряда.

Многочисленные поиски кварков в свободном состоянии, производившиеся на ускорителях высоких энергий и в космических лучах, оказались безуспешными. Ученые считают, что одной из причин ненаблюдаемости свободных кварков являются, возможно, их очень большие массы. Это препятствует рождению кварков при тех энергиях, которые достигаются на современных ускорителях. Тем не менее, большинство специалистов сейчас уверены в том, что кварки существуют внутри тяжелых частиц – адронов.

Фундаментальные взаимодействия. Процессы, в которых участвуют различные элементарные частицы, сильно различаются по характерным временам их протекания и энергиям. Согласно современным представлениям, в природе осуществляется четыре типа взаимодействий, которые не могут быть сведены к другим, более простым видам взаимодействий: сильное, электромагнитное, слабое и гравитационное. Эти типы взаимодействий называют фундаментальными.

Сильное (или ядерное) взаимодействие – это наиболее интенсивное из всех видов взаимодействий. Они обуславливает исключительно прочную связь между протонами и нейтронами в ядрах атомов. В сильном взаимодействии могут принимать участие только тяжелые частицы – адроны (мезоны и барионы). Сильное взаимодействие проявляется на расстояниях порядка и менее 10–15 м. Поэтому его называют короткодействующим.

Электромагнитное взаимодействие. В этом виде взаимодействия могут принимать участие любые электрически заряженные частицы, а так же фотоны – кванты электромагнитного поля. Электромагнитное взаимодействие ответственно, в частности, за существование атомов и молекул. Оно определяет многие свойства веществ в твердом, жидком и газообразном состояниях. Кулоновское отталкивание протонов приводит к неустойчивости ядер с большими массовыми числами. Электромагнитное взаимодействие обуславливает процессы поглощения и излучения фотонов атомами и молекулами вещества и многие другие процессы физики микро- и макромира.

Слабое взаимодействие – наиболее медленное из всех взаимодействий, протекающих в микромире. В нем могут принимать участие любые элементарные частицы, кроме фотонов. Слабое взаимодействие ответственно за протекание процессов с участием нейтрино или антинейтрино, например, β-распад нейтрона

а также безнейтринные процессы распада частиц с большим временем жизни (τ ≥ 10–10 с).

Гравитационное взаимодействие присуще всем без исключения частицам, однако из-за малости масс элементарных частиц силы гравитационного взаимодействия между ними пренебрежимо малы и в процессах микромира их роль несущественна. Гравитационные силы играют решающую роль при взаимодействии космических объектов (звезды, планеты и т. п.) с их огромными массами.

В 30-е годы XX века возникла гипотеза о том, что в мире элементарных частиц взаимодействия осуществляются посредством обмена квантами какого-либо поля. Эта гипотеза первоначально была выдвинута нашими соотечественниками И. Е. Таммом и Д. Д. Иваненко. Они предположили, что фундаментальные взаимодействия возникают в результате обмена частицами, подобно тому, как ковалентная химическая связь атомов возникает при обмене валентными электронами, которые объединяются на незаполненных электронных оболочках.

Взаимодействие, осуществляемое путем обмена частицами, получило в физике название обменного взаимодействия. Так, например, электромагнитное взаимодействие между заряженными частицами, возникает вследствие обмена фотонами – квантами электромагнитного поля.

Теория обменного взаимодействия получила признание после того, как в 1935 г. японский физик Х. Юкава теоретически показал, что сильное взаимодействие между нуклонами в ядрах атомов может быть объяснено, если предположить, что нуклоны обмениваются гипотетическими частицами, получившими название мезонов. Юкава вычислил массу этих частиц, которая оказалась приблизительно равной 300 электронным массам. Частицы с такой массой были впоследствии действительно обнаружены. Эти частицы получили название π-мезонов (пионов). В настоящее время известны три вида пионов: π+, π и π0 (см. табл. 9.9.1).

В 1957 году было теоретически предсказано существование тяжелых частиц, так называемых векторных бозонов W+, W и Z0, обуславливающих обменный механизм слабого взаимодействия. Эти частицы были обнаружены в 1983 году в экспериментах на ускорителе на встречных пучках протонов и антипротонов с высокой энергией. Открытие векторных бозонов явилось очень важным достижением физики элементарных частиц. Это открытие ознаменовало успех теории, объединившей электромагнитное и слабое взаимодействия в единое так называемое электрослабое взаимодействие. Эта новая теория рассматривает электромагнитное поле и поле слабого взаимодействия как разные компоненты одного поля, в котором наряду с квантом электромагнитного поля участвуют векторные бозоны.

После этого открытия в современной физике значительно возросла уверенность в том, что все виды взаимодействия тесно связаны между собой и, по существу, являются различными проявлениями некоторого единого поля. Однако объединение всех взаимодействий остается пока лишь привлекательной научной гипотезой.

Физики-теоретики прилагают значительные усилия в попытках рассмотреть на единой основе не только электромагнитное и слабое, но и сильное взаимодействие. Эта теория получила название Великого объединения. Ученые предполагают, что и у гравитационного взаимодействия должен быть свой переносчик – гипотетическая частица, названная гравитоном. Однако эта частица до сих пор не обнаружена.

В настоящее время считается доказанным, что единое поле, объединяющее все виды взаимодействия, может существовать только при чрезвычайно больших энергиях частиц, недостижимых на современных ускорителях. Такими большими энергиями частицы могли обладать только на самых ранних этапах существования Вселенной, которая возникла в результате так называемого Большого взрыва (Big Bang). Космология – наука об эволюции Вселенной – предполагает, что Большой взрыв произошел 18 миллиардов лет тому назад. В стандартной модели эволюции Вселенной предполагается, что в первый период после взрыва температура могла достигать 1032 К, а энергия частиц E = kT достигать значений 1019 ГэВ. В этот период материя существовала в форме кварков и нейтрино, при этом все виды взаимодействий были объединены в единое силовое поле. Постепенно по мере расширения Вселенной энергия частиц уменьшалась, и из единого поля взаимодействий сначала выделилось гравитационное взаимодействие (при энергиях частиц ≤ 1019 ГэВ), а затем сильное взаимодействие отделилось от электрослабого (при энергиях порядка 1014 ГэВ). При энергиях порядка 103 ГэВ все четыре вида фундаментальных взаимодействий оказались разделенными. Одновременно с этими процессами шло формирование более сложных форм материи – нуклонов, легких ядер, ионов, атомов и т. д. Космология в своей модели пытается проследить эволюцию Вселенной на разных этапах ее развития от Большого взрыва до наших дней, опираясь на законы физики элементарных частиц, а также ядерной и атомной физики.

Сильное взаимодействие элементарных частиц вызывает процессы, протекающие с наибольшей по сравнению с другими процессами интенсивностью и приводит к самой сильной связи элементарных частиц. Именно оно обусловливает связь протонов и нейтронов в ядрах атомов.

Электромагнитное взаимодействие отличается от других участием электромагнитного поля. Электромагнитное поле (в квантовой физике - фотон) либо излучается, либо поглощается при взаимодействии, либо переносит взаимодействие между телами.

Электромагнитное взаимодействие обеспечивает связь ядер и электронов в атомах и молекулах вещества, и тем самым определяет (на основе законов квантовой механики) возможность устойчивого состояния таких микросистем.

Слабое взаимодействие элементарных частиц вызывает очень медленно протекающие процессы с элементарными частицами, в том числе распады квазистабильных частиц.

Слабое взаимодействие гораздо слабее не только сильного, но и электромагнитного взаимодействия, но гораздо сильнее гравитационного.

Гравитационное взаимодействие элементарных частиц является наиболее слабым из всех известных. Гравитационное взаимодействие на характерных для элементарных частиц расстояниях дает чрезвычайно малые эффекты из-за малости масс элементарных частиц.

Слабое взаимодействие гораздо сильнее гравитационного, но в повседневной жизни роль гравитационного взаимодействия гораздо заметнее роли слабого взаимодействия. Это происходит потому, что гравитационное взаимодействие (как, впрочем, и электромагнитное) имеет бесконечно большой радиус действия. Поэтому, например, на тела, находящиеся на поверхности Земли, действует гравитационное притяжение со стороны всех атомов, из которых состоит Земля. Слабое же взаимодействие обладает настолько малым радиусом действия, что он до сих пор не измерен.

В современной физике фундаментальную роль играет релятивистская квантовая теория физических систем с бесконечным числом степеней свободы - квантовая теория поля. Эта теория построена для описания одного из самых общих свойств микромира – универсальной взаимной превращаемости элементарных частиц. Для описания такого рода процессов требовался переход к квантовому волновому полю. Квантовая теория поля с необходимостью является релятивистской, поскольку если система состоит из медленно движущихся частиц, то их энергия может оказаться недостаточной для образования новых частиц с ненулевой массой покоя. Частицы же с нулевой массой покоя (фотон, возможно нейтрино) всегда релятивистские, т.е. всегда движутся со скоростью света.

Универсальный способ ведения всех взаимодействий, основанный на калибровочной симметрии, дает возможность их объединения.

Квантовая теория поля оказалась наиболее адекватным аппаратом для понимания природы взаимодействия элементарных частиц и объединения всех видов взаимодействий.

Квантовая электродинамика - та часть квантовой теории поля, в которой рассматривается взаимодействие электромагнитного поля и заряженных частиц (или электронно-позитронного поля).

В настоящее время квантовая электродинамика рассматривается как составная часть единой теории слабого и электромагнитного взаимодействий.

В зависимости от участия в тех или иных видах взаимодействия все изученные элементарные частицы, за исключением фотона, разбиваются на две основные группы - адроны и лептоны.

Адроны (от греч. – большой, сильный) – класс элементарных частиц, участвующих в сильном взаимодействии (наряду с электромагнитным и слабым). Лептоны (от греч. – тонкий, легкий) – класс элементарных частиц, не обладающих сильным взаимодействием, участвующих только в электромагнитном и слабом взаимодействии. (Наличие гравитационного взаимодействия у всех элементарных частиц, включая фотон, подразумевается).

Законченная теория адронов, сильного взаимодействия между ними пока отсутствует, однако имеется теория, которая, не являясь ни законченной, ни общепризнанной, позволяет объяснить их основные свойства. Эта теория – квантовая хромодинамика, согласно которой адроны состоят из кварков, а силы между кварками обусловлены обменом глюонами. Все обнаруженные адроны состоят из кварков пяти различных типов ("ароматов"). Кварк каждого "аромата" может находиться в трех "цветовых" состояниях, или обладать тремя различными "цветовыми зарядами".

Если законы, устанавливающие соотношение между величинами, характеризующими физическую систему, или определяющие изменение этих величин со временем, не меняются при определенных преобразованиях, которым может быть подвергнута система, то говорят, что эти законы обладают симметрией (или инвариантны) относительно данных преобразований. В математическом отношении преобразования симметрии составляют группу.

В современной теории элементарных частиц концепция симметрии законов относительно некоторых преобразований является ведущей. Симметрия рассматривается как фактор, определяющий существование различных групп и семейств элементарных частиц.

Сильное взаимодействие симметрично относительно поворотов в особом "изотопическом пространстве". С математической точки зрения изотопическая симметрия отвечает преобразованиям группы унитарной симметрии SU(2). Изотопическая симметрия не является точной симметрией природы, т.к. она нарушается электромагнитным взаимодействием и различием в массах кварков.

Изотопическая симметрия представляет собой часть более широкой приближенной симметрии сильного взаимодействия - унитарной SU(3)- симметрии. Унитарная симметрия оказывается значительно более нарушенной, чем изотопическая. Однако высказывается предположение, что эти симметрии, которые оказываются очень сильно нарушенными при достигнутых энергиях, будут восстанавливаться при энергиях, отвечающих так называемому "великому объединению".

Для класса внутренних симметрий уравнений теории поля (т.е. симметрий, связанных со свойствами элементарных частиц, а не со свойствами пространства-времени), применяется общее название - калибровочная симметрия. Калибровочная симметрия приводит к необходимости существования векторных калибровочных полей, обмен квантами которых обусловливает взаимодействия частиц.

Идея калибровочной симметрии оказалась наиболее плодотворной в единой теории слабого и электромагнитного взаимодействий.

Интересной проблемой квантовой теории поля является включение в единую калибровочную схему и сильного взаимодействия ("великое объединение").

Другим перспективным направлением объединения считается суперкалибровочная симметрия, или просто суперсимметрия.

В 60-х годах американскими физиками С.Вайнбергом, Ш.Глэшоу, пакистанским физиком А.Саламом и др. была создана единая теория слабого и электромагнитного взаимодействий, позднее получившая название стандартной теории электрослабого взаимодействия. В этой теории наряду с фотоном, осуществляющим электромагнитное взаимодействие, появляются промежуточные векторные бозоны – частицы, переносящие слабое взаимодействие. Эти частицы были экспериментально обнаружены в 1983 году в ЦЕРНе.

Открытие на опыте промежуточных векторных бозонов подтверждает правильность основной (калибровочной) идеи стандартной теории электрослабого взаимодействия. Однако для проверки теории в полном объеме необходимо также экспериментально исследовать механизм спонтанного нарушения симметрии. Если этот механизм действительно осуществляется в природе, то должны существовать элементарные скалярные бозоны - так называемые хиггсовы бозоны. Стандартная теория электрослабого взаимодействия предсказывает существование, как минимум, одного скалярного бозона.

Механизм спонтанного нарушения симметрии, который встречается в разнообразных физических ситуациях, получил широкое распространение в квантовой теории поля. Было показано, что в калибровочных теориях этот механизм может приводить к появлению конечной массы у безмассовых калибровочных частиц (т.н. эффект Хиггса). В моделях "Великого объединения" группа симметрии электрослабого взаимодействия и группа симметрии сильного взаимодействия являются подгруппами единой группы, характеризующейся единой константой калибровочного взаимодействия.

В основе "Великого объединения" - тот факт, что при переходе к малым расстояниям (т.е. к высоким энергиям) увеличивается константа электрослабого взаимодействия и уменьшается константа сильного взаимодействия. Экстраполяция такой тенденции на сверхвысокие энергии приводит к равенству констант всех трех взаимодействий при некотором энергетическом масштабе, при котором происходит спонтанное нарушение симметрии "великого объединения", приводящее к возникновению масс у частиц, описывающих смешанные калибровочные поля.

В разных моделях "великого объединеия" предсказывается различная величина энергетического масштаба, но в любом случае такие энергии недостижимы в обозримом будущем ни на ускорителях, ни в космических лучах. Для проверки моделей "Великого объединения" могут использоваться либо их предсказания в низкоэнергетической области, либо космологические следствия этих моделей (по современным представлениям, на очень ранних стадиях расширения Вселенной могли достигаться температуры много большие, чем энергетический масштаб "Великого объединения").

Одним из предсказаний моделей "Великого объединения" является несохранение барионного заряда и, как следствие, нестабильность протона. Супергравитация – калибровочная теория суперсимметрии, представляющая собой суперсимметричное обобщение общей теории относительности (теории тяготения). Расширенная теория супергравитации обладает симметрией, в принципе позволяющей объединить все известные виды взаимодействий – гравитационное, слабое, электромагнитное и сильное. Однако имеющиеся модели пока далеки от реальной действительности (в частности, в них нет места некоторым фундаментальным частицам).

Таким образом, можно сичтать, что на данном этапе развития науки основные концепции физики элементарных частиц – это КХД – квантовая хромодинамика и КАД - квантовая ароматодинамика. КХД описывает сильные (или «цветные») взаимодействия между кварками (соответственно: антикварками), из которых состоят адроны (барионы и мезоны). Кварки «склеиваются» в адроны силами, переносимыми глюонами.

КАД объединяет квантовую электродинамику (КЭД), являющуюся теорией электромагнитных сил, и теорию слабых взаимодействий. Согласно КАД, элементарные частицы – это лептоны. Лептоны – класс точечно подобных частиц: электрон, мюон и тау-лептон и соответствующие им нейтрино. Все они имеют полуцелый спин.

Перспективы развития физики элементарных частиц связаны с попытками создания теории «великого объединения» – единой теории, объединяющей КАД и КХД.

Ядерная физика изучает структуру и свойства атомных ядер. Она исследует также взаимопревращения атомных ядер, происходящие в результате как радиоактивных распадов, так и различных ядерных реакций. К ядерной физике тесно примыкают физика элементарных частиц, физика и техника ускорителей заряженных частиц, ядерная энергетика.

Ядерно-физические исследования имеют огромное научное значение, позволяя продвигаться в понимании строения материи, и в то же время чрезвычайно важны в практическом отношении (в энергетике, медицине и т.д.).

В ядре нуклоны связаны силами особого рода – ядерными. Одна из характерных их особенностей – короткодействие: на расстояниях порядка 10-15 м и меньше они превышают любые другие силы, вследствие чего нуклоны не разлетаются под действием электростатического отталкивания одноименно заряженных протонов. При больших расстояниях ядерные силы очень быстро уменьшаются до нуля.

Механизм действия ядерных сил основан на том же принципе, что и электромагнитных – на обмене взаимодействующих объектов виртуальными частицами.

 


Дата добавления: 2015-10-21; просмотров: 96 | Нарушение авторских прав


Читайте в этой же книге: Движение и его виды. Относительность движения | Законы сохранения и их роль в формировании научной картины мира | Пространство и время как основные свойства материи | И их макроскопические храктеристики | Теплота и механическая работа (закон сохранения энергии) | И флуктуации. Закон возрастания энтропии | Неравновесные системы и их характеристики | В природе и обществе | И фотонов). | Современные представления о строении атома (волновые свойства атомов и молекул; лазерное излучение) |
<== предыдущая страница | следующая страница ==>
Соотношение неопределенностей и квантово-волновой дуализм| Квантовая инженерия в наномире

mybiblioteka.su - 2015-2024 год. (0.02 сек.)