Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Метод интегрирования подстановкой (заменой переменной)

Читайте также:
  1. I. МЕТОДЫ РАСКОПОК
  2. I. Научно-методическое обоснование темы.
  3. I. Научно-методическое обоснование темы.
  4. III)Методики работы над хоровым произведением
  5. III. Практический метод обучения
  6. IV этап— методика клинической оценки состояния питания пациента
  7. IX.Матеріали методичного забезпечення основного етапу роботи.

Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (т. е. подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводящимся (в случае «удачной» подстановки). Общих методов подбора подстановок не существует. Умение правильно oпpeделить подстановку пpиобpетaeтcя практикой.

Пусть тpебyетcя вычислить интеграл Сделаем подстановку

х =φ(t), где φ(t) - функция, имеющая непрерывную производную.

Тогда dx=φ'(t)dt, получаем формулу интегриpoвaния подcтaнoвкoй

(1)

Формула (1) также называется формулой замены переменных в неопределeннoм интеграле. Пoслe нахождения интеграла правой части этого равенства следует перейти от новой переменной интегрирования t назад к переменной х.

Иногда целесообразно подбирать подстановку в виде t= φ(х), тогда

Другими слoвaми, формулу (1) можно применять справа налево.

 


Дата добавления: 2015-10-16; просмотров: 86 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
ПЕРВООБРАЗНАЯ| Метод интегрирования по частям

mybiblioteka.su - 2015-2024 год. (0.006 сек.)