Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

На минимум. методу дихотомии

Читайте также:
  1. В минимуме светопоглощения
  2. Важность цены открытия для минимума или максимума дня
  3. Дивергенции "быков" класса В: цены опускаются к новому минимуму, а индикатор дает такой же глубокий минимум, что и предыдущий. Это самый слабый сигнал к покупке.
  4. Каждый треугольник образован двумя сближающимися линиями. Верхняя линия соединяет два или более максимумов, а нижняя два или более минимумов.
  5. Как выбрать сухой корм с минимумом углеводов.
  6. Классификация и необходимый минимум узлов, которые должен знать и уметь вязать (применять на практике) участник горного похода первой категории сложности
  7. Лексический минимум. Существительные второго склонения.

8 Да

Z1< Z2

 

Нет

9 10

 

a = xc b = xc Рисунок 3.3. Схема алгоритма программы по

методу дихотомии

 

 

Метод золотого сечения основан на делении отрезка [a, b] по правилу золотого сечения, когда отношение большего отрезка к меньшему const. Такое отношение определяется выражением ( -1)/2=0.62. При этом методе в отличие от метода дихотомии на каждой итерации требуется расчет только одного значения целевой функции. В результате находится решение xп и соответствующее ему значение целевой функции Zп (рисунки 3.4, 3.5).

На минимум:

f(x)

 

 


f(x2)

(1-k)(b-a)

f(x1) k(b-a)

 

 


a x1 x2 b x

 

Рисунок 3.4 – Графическая интепретация метода золотого сечения

 

1

Пуск

 

Ввод a, b, e a и b – текущие значения нижней и верхней

границ интервала поиска экстремума

e – точность поиска

k= ( -1)/2

 

 

i = 1

 

5 13

11 Да 15

x1 = a +(1-k)(b-a) abs(x2-x1)<e xп = (x2+x1)/2

 

6 Нет 16

Z1 = f(x1) на минимум 10

Нет 12 Zп = f(xп)

Z1 < Z2

Нет Да 17

i=1 13 Вывод xп , Zп

 

8 Да b= x2: x2 = x1

Z2 = Z1

i = 1 14 18

a= x1: x1 -= x2 5 Останов

9 Z1-= Z2

 

x2 = a + k (b-a)

 

Z2 = f(x2) 12

Рисунок 3.5. Схема алгоритма программы по методу

золотого сечения

 

Метод Фибоначчи основан на делении отрезка [a, b] с использованием чисел Фибоначчи, представляющих ряд, у которого последующее число равно сумме двух предыдущих (1,1,2,3,5,8 и т.д.).

 

Шаговые методы основаны на том, что текущему приближению к решению xп на каждом новом шаге дается приращение h как xп=xп+h и вычисляется f(xп). Если новое значение целевой функции "лучше" предыдущего, то переменной x дается новое приращение. Если функция "ухудшилась", то поиск в данном направлении завершен.

Имеется ряд разновидностей шагового метода поиска экстремума целевых функций (прямой поиск, поразрядного приближения, Зейделя и др.).

Графическая интепретация и алгоритм поиска экстремума функции на основе поразрядного приближения приведены на рисунках 3.6, 3.7.

f(x)

 

 

 


f(xп+h)

f(xп) На минимум

 

 

xп xп+h x

Рисунок 3.6 – Графическая интепретация метода поразрядного приближения

 

1

Пуск

 

xп, h, a,e xп и h – текущие значения соответственно приближения

к решению и шага поиска; a – коэффициент

изменения шага поиска; e – точность поиска решения

 

Z = f(xп)

 

Zп = Z

 

 

 

xп = xп + h

 

 

Z= f(xп)

 


Дата добавления: 2015-10-16; просмотров: 74 | Нарушение авторских прав


Читайте в этой же книге: Статистическое имитационное моделирование | Закон распределения Релея | Многоканальная разомкнутая система массового обслуживания | Многоканальная замкнутая система массового обслуживания | На минимум | На минимум 1 страница | На минимум 2 страница | На минимум 3 страница | На минимум 4 страница | Задача о назначениях |
<== предыдущая страница | следующая страница ==>
Транспортная задача линейного программирования| На минимум

mybiblioteka.su - 2015-2024 год. (0.006 сек.)