Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Определение вида квадратичной формы

Читайте также:
  1. I, II, и III формы port de bras.
  2. I.2 Определение понятия фразеологизма
  3. III. ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНОСТИ ПРОИЗВОДСТВА
  4. IV, V, VI формы port de bras.
  5. А) Определение расчетных усилий в ветвях колонны
  6. А) Определение требуемой площади поперечного сечения колонны.
  7. А. Определение ценной бумаги

Максимизировать целевую функцию:

Y=21x1+5x2+7x3- -2x1x2- - → max

При ограничениях:

x1+3x2 ≤ 2

3x1+x3 ≤ 0

x1,2,3 ≥ 0

 

Возьмем приведённые частные производные частные производные от ЦФ:

Перепишем целевую функцию:

Y = (0 +10,5x1+2,5x2+3,5x3)*1+

+(10,5 - 5x1 - x2 + 0x3)*x1+

+(2,5 - x1 - x2 + 0x3)*x2+

+(3,5 + 0x1 + 0x2 - x3)*x3

 

Матрица D:

 

Определяем вид квадратичной формы:

 

1) Критерий Сильвестра.

Определим миноры:

 

 

Полученный ряд является знакочередующимся, следовательно, квадратичная форма целевой функции отрицательно определённая.

 

2) Метод характеристических чисел.

 

 

Все корни отрицательные, следовательно, квадратичная форма целевой функции отрицательно определённая.

По результатам исследования квадратичной формы целевой функции можно сделать вывод, что для решения задачи может быть применён квадратичный метод Била.

 

 



Дата добавления: 2015-09-07; просмотров: 92 | Нарушение авторских прав


Читайте в этой же книге: Решение задачи 1.2 | Решение задачи 1.3 | Решение задачи методом отсекающих плоскостей (метод Гомори) | Решение задачи методом ветвей и границ 1 страница | Решение задачи методом ветвей и границ 2 страница | Решение задачи методом ветвей и границ 3 страница | Решение задачи методом отсекающих плоскостей (метод Гомори) | Решение задачи сепарабельным симплекс-методом | Переход от прямой задачи к двойственной | Интерфейс |
<== предыдущая страница | следующая страница ==>
Решение задачи методом ветвей и границ| Решение задачи методом Била

mybiblioteka.su - 2015-2024 год. (0.006 сек.)