Читайте также:
|
|
Как известно из дисциплины «Информационные системы» [ ], под данными понимаются факты или идеи, представленные в формализованном виде. Сами по себе данные не имеют смысловой нагрузки, она появляется в результате интерпретации этих данных.
Пример.
//здесь пример таблицы из базы данных (1)
ФИО студентов | ||||
Иванов И.И. | Иванов И.И. | |||
Петров П.П. | Петров П.П. | |||
Сидоров С.С. | Сидоров С.С. |
Итак, данные не дают информации, однако ситуация меняется, если мы подразумеваем, что в левой колонке фамилии студентов, а в правой – номера их групп.
Как мы помним, средство, позволяющее реализовывать интерпретацию данных и таким образом способствовать получению информации, называется моделью данных (МД), а совокупность данных, определенных с помощью модели данных, называется базой данных (БД). Отличительной особенностью баз данных является четкое разделение на интенсиональную часть (данные) и экстенсиональную (средства интерпретации данных). Особенностью моделей знаний (МЗ) является как бы совместное хранение интенсионала и экстенсионала базы данных, что открывает новые возможности. Модели знаний являются формальной основой для построения баз знаний. К сожалению, модели знаний в отличие от моделей данных не вписываются в какое-то одно общее формальное определение.
Примечание. Как мы помним модель данных можно формально определить, как тройку M={G, R, O}, где G – множество правил порождения структур данных (схемы), R – множество правил порождения ограничений целостности, О – множество допустимых операций над данными.
Тем не менее, существует несколько подходов к классификации моделей знаний. Согласно самому распространенному подходу выделяют логические, продукционные, сетевые и фреймовые модели. Эта классификация фактически основана на математическом аппарате, используемом в моделях. Так, в основе логического подхода лежит аппарат математической логики, в основе продукционных моделей формальные правила особого вида, называемые продукциями, в основе сетевого подхода – различные структуры на основе графов, а в основе фреймов – идея перехода от общего к частного за счет вычисления конкретных параметров.
Нам удобнее придерживаться иной классификации, более связанной с применимостью тех или иных моделей для решения того или иного класса задач. С этой точки зрения выделяют логические, продукционные, реляционные модели и нейронные сети.
Заметим, что реляционные модели представления знаний, отличающиеся «близостью» к естественным языкам, ни в коем случае нельзя путать с реляционной моделью данных, которая изучается в курсе «Информационные системы».
Глава 2. ЛОГИЧЕСКИЕ МОДЕЛИ ПРЕДСТАВЛЕНИЯ ЗНАНИЙ
В этой главе рассматриваются модели знаний, основанные на аппарате математической логики и их применение для решения ряда задач. К ним прежде всего относится автоматизированный логический вывод и построение экспертных систем. Одновременно рассматривается и структура этих систем.
Основное внимание уделяется классическим логикам – логике высказываний (ЛВ) и логике предикатов первого порядка (ЛППП), но дается и краткий обзор неклассических логик, в частности логик высших порядков, модальных и многозначных логик.
Материал главы излагается с расчётом на то, что студенты имеют представление об основах теории множеств, математической логики, программирования на языке высокого уровня, теории алгоритмов и теории графов. Приводимые алгоритмы описываются на обобщенном паскале.
Дата добавления: 2015-09-06; просмотров: 158 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Точка зрения Петрунина. | | | Булева алгебра. |