Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Динамическое торможение с независимым возбуждением постоянным током

Читайте также:
  1. IV. Постоянными примерами природы.
  2. Г) Реверс (торможение) вхолостую.
  3. Глава VII КАКИМ ОБРАЗОМ НУЖНО ПРИУЧАТЬ ДЕТЕЙ К ДЕЯТЕЛЬНОЙ ЖИЗНИ И ПОСТОЯННЫМ ЗАНЯТИЯМ
  4. Динамическое равновесие
  5. Динамическое торможение
  6. Динамическое торможение с независимым самовозбуждением.

При отключении обмотки статора АД от сети, сохраняется лишь незначительный магнитный поток от остаточного намагничивания стали статора. ЭДС наводимая во вращающемся роторе и ток в роторе будут весьма малыми. Взаимодействие тока ротора с потоком от остаточного намагничивания не может создать сколько-нибудь значительного электромагнитного момента. Поэтому для получения должного тормозного момента необходимо искусственно создать надлежащий магнитный поток статора. Это может быть достигнуто подачей в обмотки статора постоянного тока или подключением к ним конденсаторов или тиристорного преобразователя частоты, обеспечивающего протекание по обмоткам статора емкостного тока, т. е. опережающего тока, создающего эффект емкости. В 1-м случае будет иметь место режим динамического торможения с независимым возбуждением, во 2-м – с самовозбуждением.

При динамическом торможении с независимым возбуждением обмотки статора отключаются от сети трехфазного тока и подключаются к источнику постоянного тока. Этот ток создает неподвижный в пространстве магнитный поток, который при вращении ротора наведет в последнем ЭДС. Под действием ЭДС в обмотках ротора потечет ток, от взаимодействия которого с неподвижным потоком возникает тормозной момент. Двигатель превращается в синхронный генератор с неявновыраженными полюсами, работающий при переменной скорости.

Симметричное включение 3-х обмоток статора в сеть постоянного тока невозможно без их переключений. Обычно используется одна из схем, приведенных на рис.

Поскольку при питании постоянным током обмотки обладают только омическим сопротивлением, для получения нужного значения тока достаточно небольшого по величине напряжения. В качестве источника постоянного тока для двигателей небольшой и средней мощности используются полупроводниковые выпрямители, а для крупных двигателей могут использоваться специальные генераторы постоянного тока низкого напряжения.

Для вывода уравнения механической характеристики АД в режиме динамического торможения режим синхронного генератора, в который превращается АД после подключения к источнику постоянного тока, целесообразно заменить эквивалентным режимом АД, полагая, что его статор вместо постоянного питается переменным током. При такой замене МДС создается совместно обмотками статора и ротора и должно быть соблюдено равенство МДС для обоих случаев, т. е. FПОСТ=FПЕР. Определение МДС, создаваемой постоянным током IПОСТ для схемы “а”, поясняет рис. и векторная диаграмма, изображенные рядом.

. Амплитуда МДС, создаваемой переменным током I1 при протекании его по обмоткам статора: . Исходя из условия . Отсюда значение переменного тока, эквивалентного постоянному: , а . Необходимые напряжения и мощность постоянного тока : .

Определив ток I1, машину в тормозном режиме можно представить как нормальный АД. Однако, работа АМ в режиме динамического торможения существенно отличается от работы в нормальном двигательном режиме. В двигательном режиме намагничивающий ток и магнитный поток при изменении скольжения практически не изменяются. При динамическом торможении магнитный поток при изменении скольжения меняется вследствие непрерывного изменения результирующей МДС, складывающейся из неизменной МДС статора (постоянного тока) и меняющейся МДС ротора (переменного тока переменной частоты).

Результирующий намагничивающий ток, приведенный к числу витков обмотки статора . Из векторной диаграммы токов следует:

Возведя в квадрат Эти выражения и почленно складывая, получим: .Намагничивающий ток равен .

В приведенной машине , где E2’ – ЭДС ротора при синхронной скорости w0, соответствующей частоте сети. При w отличной от w0, ЭДС ротора будет равна: , где n - относительная скорость или иначе – скольжение в режиме динамического торможения. При этом уравнение равновесия ЭДС для роторной цепи имеет вид: , а намагничивающий ток, выраженный через E2’: .

Полное сопротивление ротора с учетом того, что его индуктивное сопротивление изменяется с изменением скорости вращения ротора: .

Учитывая, что и подставляя значения Im, siny2 и Z2’ в уравнение для I12, из полученного соотношения находится ток I2’, который будет равен: .

Электромагнитный момент, развиваемый двигателем, выраженный через электромагнитную мощность: , где m1 – число фаз обмотки статора.

Из выражения для М видно, что момент при динамическом торможении определяется переменным током I1, эквивалентным постоянному, протекающему по обмоткам статора.

Взяв производную и приравняв ее к 0, найдем, что момент будет максимален при относительной скорости: , а значение этого момента, также называемого критическим, равно: .

Механические характеристики при различном значении постоянного тока и различном сопротивлении роторной цепи изображены на рисунке. Кривые 1 и 2 соответствуют одинаковому значению сопротивления цепи ротора и различным значениям постоянного тока в статоре, а кривые 3 и4 – тем же значениям постоянного тока, но большему сопротивлению цепи ротора.

Из выражения для МК следует, что критический момент двигателя в режиме динамического торможения не зависит от активного сопротивления цепи ротора.

Разделив значение М на значение МК, уравнению механической характеристики можно придать вид: .


Дата добавления: 2015-09-05; просмотров: 282 | Нарушение авторских прав


Читайте в этой же книге: Принимает вид | Момент инерции ротора. | Метод изоклин | Метод аналитической аппроксимации | Тормозные режимы работы электропривода с двигателем постоянного тока с последовательным возбуждением. | Торможение противовключением | Электромеханические характеристики асинхронных двигателей | Где - электромеханическая постоянная времени. | Где K - электромеханическая постоянная времени. | Характеристики асинхронного двигателя при питании от источника напряжения и от источника тока. |
<== предыдущая страница | следующая страница ==>
Динамическое торможение| Торможение с самовозбуждением

mybiblioteka.su - 2015-2024 год. (0.006 сек.)