Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Фигуры и модусы простого категорического силлогизма

Читайте также:
  1. ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ
  2. Глава 51. ОБЯЗАТЕЛЬСТВА ИЗ ДОГОВОРА ПРОСТОГО
  3. Двухцветные аспектные фигуры
  4. И коррекции фигуры
  5. Как скрыть недостатки фигуры. Часть 2
  6. ЛИССАЖУ ФИГУРЫ
  7. Масса плоской фигуры

В зависимости от положения среднего термина в посылках различают четыре фигуры силлогизма:

1) в первой фигуре большая посылка должна быть общей, меньшая – утвердительной;

2) во второй фигуре: большая посылка – общая, одна из посылок и заключение – отрицательные;

3) в третьей фигуре – меньшая посылка должна быть утвердительной, а заключение – частное;

4) четвертая фигура общеупотребительных заключений не дает.

Модусами силлогизма называются разновидности фигур, отличающихся характером посылок и заключения.

Силлогизмы, как и все умозаключения, делятся на правильные и неправильные. Задача логической теории силлогизма – систематизировать правильные силлогизмы, указать их отличительные черты.

Так как категорические силлогизмы в мышлении встречаются весьма часто, то для получения истинного заключения необходимо соблюдать следующие правила:

1) в каждом силлогизме должно быть не больше, но и не меньше трех терминов;

2) средний термин должен быть распределен хотя бы в одной из посылок;

3) если термин распределен в посылке, то он должен (быть обязательно распределен и в заключении;

4) из двух отрицательных посылок заключение сделать нельзя;

5) заключение будет отрицательным, если одна из посылок является отрицательной;

6) нельзя сделать заключение из двух частных посылок;

7) если одна из посылок частная, то и заключение должно быть частным.

Наиболее распространенные ошибки при умозаключении по категорическому силлогизму такие:

1) заключение делается по первой фигуре с меньшей отрицательной посылкой. Все классные комнаты нуждаются в проветривании. Эта комната – не классная. Эта комната не нуждается в проветривании;

2) заключение делается по второй фигуре с двумя утвердительными посылками.

Все зебры полосатые.

Это животное полосатое.

Это животное – зебра

 

Индуктивное умозаключение. Полная индукция

Индукция (лат. inductio — наведение) — процесс логического вывода на основе перехода от частного положения к общему. Индуктивное умозаключение связывает частные предпосылки с заключением не строго через законы логики, а скорее через некоторые фактические, психологические или математические представления.[1]

Индуктивное умозаключение -это такое умозаключение, в котором мысль развивается от знания меньшей степени общности к знанию большей степени общности, а заключение, вытекающее из посылок, носит преимущественно вероятностный характер.

Индукция имеет огромное познавательное значение. Всякое теоретическое положение является обобщенным результатом исследования отдельных предметов, явлений, познания их свойств и причинно-следственных отношений. К общим положениям и выводам познание может прийти лишь обычным путем, через изучение конкретной действительности, многообразных связей предметов (явлений) объективного мира. На основе этого изучения формируются индуктивные обобщения о закономерностях природного мира и общественной жизни.

Основная функция индуктивных выводов в процессе познания - генерализация, т.е. получение общих суждений. По своему содержанию и познавательному значению эти обобщения могут носить различный характер - от простейших обобщений повседневной практики до эмпирических обобщений в науке или универсальных суждений, выражающих всеобщие законы

В зависимости от полноты исследования различают полную и неполную индукцию.


Дата добавления: 2015-08-10; просмотров: 74 | Нарушение авторских прав


Читайте в этой же книге: ПРЕДМЕТ И МЕТОД ФОРМАЛЬНОЙ ЛОГИКИ.ЗНАЧЕНИЕ ЛОГИКИ | ПОНЯТИЕ КАК ФОРМА МЫШЛЕНИЯ | ВИДЫ ПОНЯТИЙ | ОТНОШЕНИЯ МЕЖДУ ПОНЯТИЯМИ. Диаграммы Эйлера-Венна | ОБОБЩЕНИЕ И ОГРАНИЧЕНИЕ ПОНЯТИЯ | Правила деления понятий | Суждения с отношениями. | ВИДЫ АНАЛОГИИ. |
<== предыдущая страница | следующая страница ==>
НЕПОСРЕДСТВЕННЫЕ УМОЗАКЛЮЧЕНИЯ из простых атрибутивных суждений| Полная индукция

mybiblioteka.su - 2015-2024 год. (0.008 сек.)