Читайте также:
|
|
Рассмотрим систему векторов (1.1), где . Максимальной линейно независимой подсистемой системы векторов (1.1) называется любой набор векторов последней, удовлетворяющий следующим условиям: векторы этого набора линейно независимы; всякий вектор из системы (1.1) линейно выражается через векторы этого набора. В общем, система векторов (1.1) может иметь несколько разных максимальных линейно независимых подсистем.
Теорема 1.6. Все максимальные линейно независимые подсистемы данной системы векторов содержат одно и то же число векторов.
Число векторов в максимальной линейно независимой подсистеме системы векторов (1.1) называется рангом последней. Системы векторов (1.1) и (1.2) называются эквивалентными, если векторы системы (1.1) линейно выражаются через систему векторов (1.2) и наоборот.
Теорема 1.7. Ранги эквивалентных систем векторов равны.
Операции, переводящие систему векторов (1.1) в систему, ей эквивалентную, следующие:
1) изменение нумерации векторов в системе;
2) удаление нулевого вектора;
3) удаление вектора, являющегося линейной комбинацией остальных векторов системы;
4) умножение произвольного вектора системы на любое, не равное нулю число;
5) прибавление к одному из векторов системы линейной комбинации остальных векторов системы.
21. Евклидово пространство
Вещественное линейное пространство называется евклидовым, если каждой паре элементов этого пространства поставлено в соответствие действительное число , называемое скалярным произведением, причем это соответствие удовлетворяет следующим условиям:
В скалярном произведении вектор — первый, а вектор — второй сомножители. Скалярное произведение вектора на себя называется скалярным квадратом. Условия 1–4 называются аксиомами скалярного произведения. Аксиома 1 определяет симметричность скалярного произведения, аксиомы 2 и 3 — аддитивность и однородность по первому сомножителю, аксиома 4 — неотрицательность скалярного квадрата .
Линейные операции над векторами евклидова пространства удовлетворяют аксиомам 1–8 линейного пространства, а операция скалярного умножения векторов удовлетворяет аксиомам 1–4 скалярного произведения. Можно сказать, что евклидово пространство — это вещественное линейное пространство со скалярным произведением. Поскольку евклидово пространство является линейным пространством, на него переносятся все понятия, определенные для линейного пространства, в частности, понятия размерности и базиса.
1. В нулевом линейном пространстве скалярное произведение можно определить единственным способом, положив . Аксиомы скалярного произведения при этом выполняются.
2. В пространствах векторы (свободные или радиус- векторы) рассматриваются как направленные отрезки. В курсе элементарной геометрии вводятся понятия длины вектора и величины угла между векторами, а затем определяется скалярное произведение: . Аксиомы 1—4 для этого скалярного произведения выполняются. Поэтому пространства являются евклидовыми. Неравенство Коши-Буняковского в этом пространстве означает, что . Геометрический смысл: длина проекции не превосходит длины наклонной (катет короче гипотенузы).
3. В пространстве скалярное произведение столбцов и можно задать формулой:
Дата добавления: 2015-08-09; просмотров: 154 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Размерность и базис линейного уравнения. Изоморфизм линейных пространств | | | Неравенство Коши-Буняковского |